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Department: Department of Software Engineering
Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.
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Chapter 1

Introduction

The Extensible Markup Language (XML) [30] is rapidly becoming a de facto standard
format for electronic data structuring, storage and exchange. It has been enthusiastically
adopted in many areas of computer industry; for example, it is being increasingly used in a
variety of database and eBusiness applications. Many expectations are surrounding XML,
and it is therefore likely that the amount of data available in XML will grow substantially
in the near future.

The problem with XML is that it is text-based, and verbose by its design (the XML
standard explicitly states that “terseness in XML markup is of minimal importance”). As a
result, the amount of information that has to be transmitted, processed and stored is often
substantially larger in comparison to other data formats. This can be a serious problem in
many occasions, since the data has to be transmitted quickly and stored compactly. Large
XML documents not only consume transmission time, but also consume large amounts of
storage space.

The problem can be addressed if data compression is used to reduce the space require-
ments of XML. Because XML is text-based, the simplest and most common approach is to
use the existing text compressors and to compress XML documents as ordinary text files.
However, although it is possible to reduce the amount of data significantly in this way, the
compressed XML documents often remain larger than equivalent text or binary formats
[20]. It is obvious that this solution is only suboptimal, since two documents carrying
the same message should have the same entropy—and therefore it should be possible to
compress them to about the same size. The main reason is that general-purpose compres-
sors often fail to discover and utilize the redundancy contained in the structure of XML.
Another problem with these compressors is that they introduce another pass into XML
processing, since decompression is necessary before the data can be processed.

Recently, a number of XML-conscious compressors have emerged that improve on the
traditional text compressors. Because they are designed to take advantage of the structure
of XML during the compression, they often achieve considerably better results. Further-
more, some of them also make the XML processing APIs1 accessible, allowing to process

1Application Programming Interface
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the data right during the decompression.
Very often, these tools rely on the functionality of the existing text compressors, and

only adapt them to XML. In this thesis, we decided to go in a slightly different direc-
tion. The fact that XML has a context-free nature motivated us to take a more syntactical
oriented approach to XML compression. Among the available syntactical compression tech-
niques, so called grammar-based codes, introduced recently in [16], attracted our attention.
The grammar-based coding represents a rather novel topic in lossless data compression,
and is still a subject of intense research. Since we were not aware of any previous im-
plementation of this promising technique, to employ it in our compression scheme was a
challenging task. Moreover, it was also an interesting test on how well it performed in
practice.

In XML, the data is organized into a hierarchical and self-describing structure of ele-
ments. We observed that this structure is fairly regular and repetitive in many occasions.
If we were able to model it during the compression, it would be possible to predict it—and,
as a result, to improve the overall compression effectiveness of our compression scheme.

We have implemented two modeling strategies in our compression scheme, which we
call the simple modeling and the adaptive modeling, respectively. While the first strategy
acts rather as a foundation for further enhancements, the latter improves on it in many
ways. In the adaptive modeling, the compressor learns the structure of the input data,
and utilizes this knowledge in the process of compression. It follows from our experimental
results that by using the adaptive modeling, the amount of data that has to be compressed
can be substantially reduced. Another benefit of the adaptive modeling is that it gives us
resources that allow us to measure the structural complexity of XML documents.

The implementation of both the compressor and the decompressor is available in a form
of a C++ library called Exalt (An Experimental XML Archiving Library/Toolkit). The
library was designed to be component-based, and easy to use and extend. Thanks to that,
it represents a suitable framework for future research in the field of syntactical XML data
compression.

The following text is organized as follows. In Chapter 2, we present a brief overview
of XML and related technologies. Chapter 3 provides some necessary background in data
compression. Besides the traditional compression techniques, the grammar based codes
are discussed in more detail. In Chapter 4, the existing XML-conscious compressors are
overviewed. In Chapter 5, we discuss the main principles and features of our compression
scheme. Since we make use of probabilistic modeling of XML structure during the compres-
sion, Chapter 6 describes the two possible modeling strategies that we have implemented.
In Chapter 7, the architecture of the prototype implementation is sketched. Some details
on the implementation are then discussed in Chapter 8. We have extensively tested the
performance of our compressor, and the results are summarized in Chapter 9. Finally, we
draw some conclusions in Chapter 10. Appendix A contains the user documentation to
our compressor, while the developer documentation can be found in Appendix B.



Chapter 2

XML basics

The Extensible Markup Language or XML [30] is a markup language that describes elec-
tronic data in the form accessible both to humans and computer programs. Its roots can be
seen in another markup language called SGML (Standard Generalized Markup Language).
The main domain of SGML lies in structuring textual documents for automated process-
ing and publishing. In SGML, the data is represented as a mixture of text and markup.
The markup is represented by textual tags, and organizes and identifies the individual
components of the document.

The SGML standard soon turned out to be unnecessarily complex and very difficult
to implement. The implementations of SGML were often incomplete or unstable, and, at
the same time, more expensive than the proprietary solutions. Paradoxically, the power
of SGML represented its biggest disadvantage. Therefore, a considerable effort has been
made to define simpler and more usable subsets of SGML.

Besides XML, probably the most successful application of SGML is Hypertext Markup
Language (HTML), a language for publishing hypertext documents on the Web. Although
there are obvious similarities between HTML and XML, XML is much more general.
HTML is nothing but a fixed set of tags with predefined meaning, while in XML, we
are allowed to define any tags we want; there is no predefined set to choose from. There-
fore, we often speak of XML as a metalanguage, because it makes it possible to define other
languages. From this point of view, HTML can be seen as an application of XML.

Each XML document may optionally contain the description of its grammar. This
grammar is described in the document type definition (DTD) and may be used for au-
tomated testing of the structural validity of the document. The DTD defines the logical
structure of the document.

XML documents may be split into independent components to make their reuse pos-
sible. It is also possible to combine XML with data in different formats. In this case, we
speak of physical structure of XML documents.
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2.1 XML documents

As in SGML, textual tags are used to markup the components of the document (see Figure
2.1). The building block of each XML document is an element. An element is defined by
its start tag and end tag, and by the enclosed data (called the content of the element). To
distinguish the tags from the data, characters < and > are used to enclose the start tags,
and characters </ and > to enclose the end tags. The elements may be empty, i.e. with no
content. In such a case, they are represented by the start tag immediately followed by the
end tag, or by so called empty-element tag. Each element has a type, defined by its name.
XML is case-sensitive, therefore name, Name, and NAME are different names of elements.

.............................
.........

......................................

.............................
......... ..........................

.......
.....

.......
.......
........................ .......

.......
........................

<book>
<author>G. Orwell</author>
<title>1984</title>

</book>
<info lang="en"/> empty element

attribute name attribute value

start tag

end tag

content

Figure 2.1: Sample XML document

Each element may contain a sequence of subelements. The elements are properly nested
within each other. In other words, if the start tag of some element is in the content of
another element, the end tag is in the content of the same element. The hierarchy of the
nested elements forms a tree: there is exactly one root element, which is not contained in
any other element.

If the element contains only nested elements and no character data, we speak of element
content. The character data and the nested elements may be mixed within the element—in
that case, we speak of mixed content.

The elements may contain a set attributes. An attribute is defined by its name and its
value. If the element contains attributes, the list of them is part of the start tag (or empty-
element tag). Because the attributes provide additional information on the elements, they
are often referred to as metadata.

We say that an XML document is well-formed, if it contains one root element, its
elements are properly nested, and they do not contain any two attributes with the same
name.

XML documents may—and should—begin with XML declaration. In this declaration,
the version of XML being used is specified. Optionally, it is also possible to specify the
character encoding, and the presence of external DTD:

<?xml version="1.0" encoding="ISO-8895-2" standalone="yes"?>
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The XML declaration is a special case of so called processing instruction. Processing
instructions may be used within the documents to pass specific information to the appli-
cation that processes the document. Each processing instruction is defined by its target,
optionally followed by the value:

<?target value?>

In some occasions, it is necessary to insert a sequence of characters that might be
mistaken for the XML markup (characters < or >, for instance). For this purpose, we may
use so called character data section to identify the segment of such character data:

<![CDATA[Press <<<Enter>>>.]]>

We are allowed to use comments within XML documents. A sequence of characters is
considered to be a comment, if it begins with the string <!-- and ends with the string -->:

<!-- This is a comment -->

If the document conforms to some DTD (see Section 2.2), we may specify it in the
document type declaration. The document type declaration can point to an external subset
(that is, to the DTD that is stored externally), or can contain the DTD directly in an
internal subset, or can do both. A document type declaration starts with the keyword
DOCTYPE and looks as follows:

<!DOCTYPE book SYSTEM "book.dtd">

The example above says that the root element of the document is book, and that the
DTD is stored in the file book.dtd. The name of the file, following the SYSTEM keyword,
represents so called system identifier.1 Optionally, a public identifier may be specified.
The public identifier is preceded by the PUBLIC keyword. It does not specify the location
of the DTD directly; it is up to the application to resolve it based upon the information
contained in the identifier. If the application is not able to resolve the location of the DTD
from the public identifier, the system identifier is used.

If the document has an internal subset, the declarations are enclosed with the characters
[ and ]:

<!DOCTYPE book [
...
]>

1In system identifiers, URIs (Uniform Resource Identifiers) are used to specify the location of the
resources.
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2.2 Document Type Definition

The document type definition (DTD) defines the logical structure of XML documents.
In the DTD, we specify the elements, attributes, and entities that can be used in the
document, and the context in which they can be used. If a well-formed XML document
has an associated DTD and if it complies with the constraints expressed in the DTD, we
say that it is valid.

A DTD contains a list of declarations enclosed with the characters <! and >. There
are four types of the declarations, which are distinguished by the following keywords:
ELEMENT (element type declaration), ATTLIST (attribute-list declaration), ENTITY (entity
declaration), NOTATION (notation declaration).

In Figure 2.2, a simple DTD that may be used to describe the structure of the document
in Figure 2.1 is shown.

<!ELEMENT book (author+, title, info?)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT info EMPTY>
<!ATTLIST info lang CDATA #IMPLIED

genre (prose | poetry) "prose">

Figure 2.2: Sample DTD

In the element type declarations, the structure of the individual elements in the docu-
ment is described. Each element type declaration looks as follows:

<!ELEMENT element name (content model)>

The content model specifies the type of the content for the element. If the element
contains only character data, it should be declared as PCDATA.2 The keyword EMPTY may
be used for declaring the elements that are empty. If the element contains nested elements,
regular expressions are used to specify their type, order and number of occurrences. Be-
sides the names of the nested elements, following operators may be used in the regular
expressions: “*” (0 or more), “+” (1 or more), “?” (0 or 1), “,” (sequence), and “|”
(alternative). It is also possible to use parentheses within the regular expressions to define
subexpressions. If we do not know the structure of the element, we may use the keyword
ANY to declare its content, which means that the element may contain any elements that
are declared in the DTD, as well as character data.

If the element has mixed content (i.e. it contains character data optionally interspersed
with the nested elements e1 to en), following regular expression has to be used in the
element type declaration:

2Parsed character data
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<!ELEMENT element name (#PCDATA | e1 | ... | en)*>

In this declaration, the PCDATA keyword must be at the first position in the expression.
The types of the nested elements may be constrained, but not their order or their number
of occurrences.

As an illustration, consider the declaration of element book in Figure 2.2. According
to the DTD, it may contain one or more author subelements, followed by one title
subelement. The last and optional subelement is info.

Attributes are declared separately from the elements, in so called attribute-list declara-
tions. The attributes of one element are usually declared in one attribute-list declaration,
but it is possible to declare each of them in a separate declaration. However, the same
attributes belonging to different elements must be declared separately for each element.
The attribute-list declaration contains the name of the element, and one or more attribute
definitions specifying the name of the attribute, its type, and, in some occasions, its default
value:

<!ATTLIST element name attribute name type ...>

The type of the attribute may be one of the following: CDATA (character data), NMTOKEN
(name token), NMTOKENS (set of name tokens), ENTITY (entity reference), ENTITIES (set of
entity references), ID (value that is unique within the document), IDREF (value of type ID),
IDREFS (set of values of type ID), NOTATION (the name of the notation), an enumeration
of possible values.

In the attribute declaration, the keyword REQUIRED means that the attribute must
always be provided, IMPLIED that it is optional. If the declaration is neither REQUIRED nor
IMPLIED, then the a default value can be specified. If the default value is preceded by the
FIXED keyword, the attribute must always have the default value.

In Figure 2.2, two attributes of element info are declared. The attribute lang is
optional and its values are character data strings. The second attribute, genre, may have
two possible values (prose and poetry). If it is not specified, the default value (prose) is
used.

Besides the elements and attributes, also the entities and notations may be declared
in the DTD. Entities represent the units of the physical structure of XML documents.
There are two basic types of entities: general entities and parameter entities. The general
entities can be referenced within the entire document, while the parameter entities can be
referenced only within the document type definition.

General entities may be contain text or binary data. The text entities may be stored
either in the document (in that case we speak of internal text entities), or in a separate
file (external text entities). The binary entities must always be stored externally.

The entity declarations contain the ENTITY keyword. In the following example, decla-
rations of various types of entities are demonstrated.

<!ENTITY xml "Extensible Markup Language">
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<!ENTITY footer SYSTEM "footer.xml">
<!ENTITY employees PUBLIC "-//MyCorp//TEXT Employee List //EN"

"employees.xml">
<!NOTATION jpeg SYSTEM "image/jpeg">
<!ENTITY car SYSTEM "car.jpg" NDATA jpeg>

In the first row, internal entity xml is declared. In the second and third rows, two
external text entities (footer and employees) are declared. The location of the external
entity must be specified by a system identifier, or optionally by a public identifier.

The binary entity car represents an image in the JPEG format. The NDATA section
specifies the type of the notation. Based upon this type, the application should be able
to identify the format of referenced binary data. The notation declarations contain the
keyword NOTATION and assign system or public identifiers to the notations.

The parameter entities are declared similarly to the internal text entities. In the pa-
rameter entity declaration, the character % precedes the name of the entity:

<!ENTITY % common "(para | img)">

As stated above, parameter entities can be used only within the DTD, whereas general
entities can be used anywhere within the document. To reference the parameter entity,
characters % and ; surrounding the entity name are used. In the case of general text
entities, the character & has to be used instead of %. Therefore, to reference the common
parameter entity, one should write %common;, while the footer text entity is referenced
with &footer;. The only way how to reference the data of binary entities is by means of
the attributes of type NOTATION (for example, <img src="car">).

Although the mechanism of DTD is powerful, there are several areas where it may not
be sufficient. For example, it is not possible to state how many times a certain element
can occur within the document. There is also no way how to specify the format or the
type of character data. In the DTD, the character data is always considered to be of
type PCDATA, no matter if it represents strings, numbers, or dates. As a solution to
this, a new language for describing the content and the structure of XML documents has
been proposed. This language—called XML Schema—is XML-based, and improves on the
functionality of DTD in many ways [33].

2.3 Processing of XML documents

While it is fairly easy to generate XML documents, it is much more difficult task to
process them. There are many problems arising from the parsing of XML data—as a
simple example, the white space characters, used for the formatting of the document,
may cause misinterpretations if handled imprecisely. Moreover, the processing of XML
documents involves other tasks to be performed, such as entity resolving, DTD processing,
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validation, error reporting, etc. Therefore, developers of XML-based applications often use
standardized APIs for accessing the XML content.

Among these APIs, the most popular are Simple API for SAX (SAX) [26] and Docu-
ment Object Model (DOM) [29].

startDocument()
startElement("book")
startElement("author")
characters("G. Orwell")
endElement("author")
startElement("title")
characters("1984")
endElement("title")
startElement("info", attributes(["lang", "en"]))
endElement("info")
endElement("book")
endDocument()

Figure 2.3: Example of SAX event stream

SAX is based on an event-driven approach: each time the XML parser encounters any
relevant information in the document (for example, element start tags, character data,
comments, etc.), it emits an “event” to the client application. It is up to the application
how it deals with the supplied data. Because the document is processed incrementally,
it is not necessary to store it in the memory, which can be crucial for large documents.
In Figure 2.3, the SAX events that are emitted by the XML parser during processing the
document in Figure 2.1 (page 4) are listed.

G. Orwellauthor

book

title 1984

lang eninfo

Document

E

E T

T

AE

E

Figure 2.4: Example of a DOM tree

In the DOM model, the document is processed first, and then stored in a tree object
structure. The client application can access this structure, and modify its content. The
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DOM interface makes it possible to check if the document is well-formed (or valid with
respect to its DTD) before the client application starts to process it. In Figure 2.4, the
DOM tree representing the document in Figure 2.1 is displayed.

Whether to use SAX or DOM depends on the character of the client application. If we
use XML for on-line data exchange, the event-based approach is probably better suited.
On the other hand, if we use XML documents as simple databases, for instance, we will
probably choose the DOM model. In Table 2.5, the main differences between the SAX and
DOM interfaces are summarized.

SAX DOM
The data of the entire document is not
stored in the memory.

The entire document is stored as a tree
in the memory.

It is not possible to modify the docu-
ment.

It is possible to modify the document
tree.

The data of the document is immediately
accessible to the application.

The document has to be processed first
before it is accessible to the application.

Table 2.5: Differences between SAX and DOM



Chapter 3

Data compression

This chapter provides necessary background in information theory and lossless data com-
pression, focusing on techniques that are used or referenced in the thesis later on. Many
of the techniques are outlined only roughly, because the exact knowledge of their workings
is not necessary for our purposes. More detailed information can be found in [21] or [18],
for instance.

Adequate space is devoted to so called grammar-based codes, a syntactical compression
technique that we have employed in our XML compression scheme. Since grammar-based
codes represent a rather new topic in the field of data compression, and are still a subject
of intense research, we describe the principles of this compression scheme, as well as the
main results achieved so far, in detail.

3.1 Fundamental concepts

3.1.1 Coding and decoding

Let A be a finite nonempty set of symbols. Let A∗ be the set of all finite sequences from A
(including the empty sequence λ), and A+ the set of all nonempty sequences from A. The
cardinality of A is denoted as |A|, and for any x ∈ A∗, |x| represents the length of x.

The code K is a triple K = (S, C, f), where S is a finite set of source units, C is a finite
set of code units, and f is a mapping from S to C+. The mapping f assigns to every source
unit from S just one codeword from C+. The codeword consists of a sequence of code units.
Two distinct source units should be never assigned the same codewords, therefore f has
to be an injective mapping.

We say that a string x ∈ C+ is uniquely decodable with respect to f , if there is at most
one sequence y ∈ S+ such that f(y) = x. Similarly, the code K = (S, C, f) is uniquely
decodable, if all strings in C+ are uniquely decodable with respect to f .

The code K is said to be a prefix code, if it has a prefix property, which requires that
no codeword is a proper prefix of any other codeword. Prefix codes represent an important
and frequently used class of codes, since they are uniquely decodable while reading the
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encoded message from left to right.
The conversion of the original data to the compressed (encoded) data is referred to as

coding or encoding. In the reverse process, decoding, the compressed data are decompressed
(decoded) to reproduce the original data. The corresponding algorithms are called encoder
and decoder, respectively.

There are various ways how to measure the degree of data reduction obtained as the
result of the encoding. The most common measures are the compression ratio and the
compression rate.

Compression ratio is a relative term which compares the length of the compressed data
to the length of the original data:

Compression ratio =
Length of original data

Length of compressed data

Compression rate characterizes the rate of the compressed data. Typically, it is in units
of bits per character (bpc) and indicates the average number of bits that are necessary to
represent one source character. Compression rate is an absolute term.

Example 3.1. The compression ratio of a compression technique that results in one char-
acter of compressed data for every two characters of the original data is 2:1 (sometimes, it
is said that the compression ratio is 50%). If the original character is represented by eight
bits (i.e. one byte), the compression rate is 4 bits per character. 2

3.1.2 Entropy and redundancy

When data is compressed, the goal is to reduce redundancy, leaving only the informational
content. To measure the quantity of information within the data, Shannon [27] defined a
concept of entropy.

Let S = {x1, x2, . . . , xn} be the set of source units. Let pi be the probability of occur-
rence of source unit xi, 1 ≤ i ≤ n. The entropy of unit xi is equal to

Hi = −log2pi bits.

This definition has an intuitive interpretation: If pi = 1, it is clear that xi is not at all
informative since it had to occur. Similarly, the smaller value of pi, the more unlikely xi is
to appear, and therefore its informational content is larger.

The average entropy of a source unit from S is defined as follows:

AH =
n∑
i=1

piHi = −
n∑
i=1

pilog2pi bits.

The entropy of a source message X = xi1xi2 . . . xik from S+ is then

H(X) = −
k∑
j=1

pij log2pij bits.
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Since the length of a codeword for the source unit xi must be sufficient to carry the
information content of xi, entropy represents a lower bound on the number of bits that
are required for the coded message. Therefore, the total number of bits must be at least
as large as the product of the entropies of the units in the source message. And since the
value of entropy is generally not an integer, variable length codewords must be used if th
elower bound has to be achieved.

If we use di bits for encoding the source unit xi, 1 ≤ i ≤ n, then the length of the
encoded message X is equal to

L(X) =
k∑
j=1

dij bits.

From the above mentioned reasons, it follows that L(X) ≥ H(X).1 The redundancy of
the code K for the message X is defined as follows:

R(X) = L(X)−H(X) =
k∑
j=1

(dij + pij log2pij) bits.

Redundancy can be interpreted as a measure of the difference between the codeword
length and the information content.

The average length of a codeword of code K is equal to the weighted sum:

AL(K) =
n∑
i=1

dipi bits.

The average redundancy of code K is equal to

AR(K) = AL(K)− AH(S) =
n∑
i=1

pi((di + log2pi) bits.

If a code K has minimum average codeword length for given probability distribution,
it is said to be a minimum redundancy code. We say that a code K is optimal, if it has
minimum redundancy. A code K is asymptotically optimal if it has the property that
for a given probability distribution, the ration of AL(K)/AH approaches to 1 as entropy
tends to infinity. That is, asymptotic optimality guarantees that average codeword length
approaches the theoretical minimum.

A code K is universal if it maps source units to codewords so that the resulting average
codeword length is bounded by c1AH + c2, where c1 and c2 are constants. Given an
arbitrary source with nonzero entropy, a universal code achieves average codeword length
that is at most a constant times the optimal possible for the source. A universal code is
asymptotically optimal iff c1 = 1.

1For more details, see for example [27].
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3.2 Representation of integers

3.2.1 Fibonacci codes

In this section, we describe a universal coding scheme based on Fibonacci numbers. While
the Fibonacci codes are not asymptomatically optimal, they compare well to other codes
(for example the Elias codes [21]) in a very large initial range.

The Fibonacci codes are based on Fibonacci numbers of the order m ≥ 2. Fibonacci
numbers of the order m are defined recursively:

F0 = F−1 = . . . F−m+1 = 1

Fn = Fn−m + Fn−m+1 + . . .+ Fn−1, n ≥ 1

Suppose that m = 2. In that case, every integer number N greater than 0 has precisely
one binary representation of the form R(N) =

∑k
i=0 diFi where di ∈ {0, 1}, k ≤ N , and Fi

are the order-2 Fibonacci numbers. There are no adjacent ones in this representation.

N R(N) F (N)
1 1 1 1
2 1 0 0 1 1
3 1 0 0 0 0 1 1
4 1 0 1 1 0 1 1
5 1 0 0 0 0 0 0 1 1
6 1 0 0 1 1 0 0 1 1
7 1 0 1 0 0 1 0 1 1
8 1 0 0 0 0 0 0 0 0 1 1
16 1 0 0 1 0 0 0 0 1 0 0 1 1
32 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1

Table 3.1: Example of order-2 Fibonacci codes

The order-2 Fibonacci code for N is defined to be F (N) = d0d1d2 . . . dk1. In other
words, the Fibonacci representation R(N) is reversed, and 1 is appended. The resulting
binary codewords form a prefix code, since every codeword terminates in two consecu-
tive 1’s which cannot appear anywhere else in a codeword. Table 3.1 shows Fibonacci
representations for some integers.

It is proven that the Fibonacci code of order 2 is universal with c1 = 2 and c2 = 3.
Because c1 6= 1, it is not asymptotically optimal. Fibonacci codes of higher orders compress
better, but no Fibonacci code is asymptotically optimal.
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3.3 Statistical methods

3.3.1 Huffman coding

Huffman codes approximate the optimum coding by variable-length prefix codes. The
original Huffman’s algorithm is static and takes an ordered list of probabilities p1, p2, . . . , pn
associated with the source units as input, and constructs a code tree called the Huffman
tree. Two passes over the data are required.

In the adaptive variant of the algorithm, the probabilities change while passing through
the message, thus changes of the initial tree have to be performed. The message can be
encoded in one pass. Furthermore, we do not need to store the mapping for the Huffman
code, which was required by the static variant.

In the following text, we describe the principles of static Huffman coding, and then we
discuss the adaptive versions.

3.3.1.1 Static Huffman coding

The algorithm of static Huffman coding takes a list of nonnegative weights as input and
constructs a full binary tree2 whose leaves are labeled with the weights. The weights
represent the probabilities of the associated source units. In Algorithm 3.1, the original
Huffman’s algorithm for construction of the Huffman tree is presented.

Input: n source units and an ordered list of probabilities (frequencies) p[i],
1 ≤ i ≤ n, associated with the source units.

Output: Ordered list of n binary codewords.

begin /* construction of the Huffman tree */
create a leaf o(p[i]) of a binary tree for each source unit i;
/* node o of the unit i is labeled by the probability p[i] */
k := n;
while k > 2 do begin

choose two smallest nonzero probabilities p[r] and p[s], where r 6= s;
q := p[r] + p[s];
create a node o labeled by q and edges [o(q), o(p[r])] and
[o(q), o(p[s])] labeled by 0 and 1, respectively;
p[r] := q; p[s] := 0; k := k − 1;

end /* construction of codewords */
concatenate labels 0 and 1 of edges on the path from the root
to the leaf and assign it to the source unit i, 1 ≤ i ≤ n;

end

Algorithm 3.1: Static Huffman coding
2A binary tree is full if every node has either zero or two children.
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The Algorithm 3.1 yields a minimal prefix code. Furthermore, it is proven to produce
a mininimum redundancy code. The upper bound on the redundancy of a Huffman code
is pn + 0.086, where pn is the probability of the least likely source unit. The average length
AL of codewords obtained by Huffman’s algorithm is the same as the weighted path-length
AEPL =

∑n
i=1 d[i] ∗ p[i] where d[i] is the length of the path from the root to the leaf i.

It is not necessary to normalize the frequencies as probabilities, i.e. as numbers from
the interval [0, 1]. The Huffman’s algorithm yields the same results with frequencies of
source units in a message. Also, the labeling of edges by 0 and 1 in Algorithm 3.1 is only
one of the possible conventions. The reverse order also leads to the optimal code. Only
the lengths of codewords are essential.

If the list of weigths is presorted, the Huffman mapping can be generated in O(n). The
number of nodes of the Huffman tree is 2n− 1.

Example 3.2. Let (1, 1, 1, 1, 3, 3, 3, 3, 7) be an ordered list that expresses frequencies of
source units occurring in a message over an alphabet of size n = 9. The application of
Algorithm 3.1 provides a Huffman tree and the associated Huffman code as illustrated in
Figure 3.1. While the average entropy of the source is 2, 869 bit, the average length of a
codeword is 2, 840 bit. 2
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Figure 3.1: Huffman code and code tree

3.3.1.2 Adaptive Huffman coding

One disadvantage of the static Huffman codes is that the code tree has to be included in the
encoded message. Therefore, there were various attempts to make the original algorithm
adaptive. The two most significant adaptive variants of the static Huffman’s algorithm are
called FGK and V algorithm, respectively. In these algorithms, the processing time required
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to encode and decode a source unit is proportional to the length of the codeword. Thanks
to that, encoding and decoding can be performed in the real time. Another advantage of
the adaptive algorithms is that they require only one pass over the data since the encoder
is “learning” the characteristics of the data on the fly. To make the decoding possible, the
decoder must learn along with the encoder by continually updating the Huffman tree so
as to stay in synchronization with the encoder.

The FGK algorithm is based on so called sibling property which is defined as follows.
A binary tree has a sibling property if each node (except the root) has a sibling, and if the
nodes can be listed in order of nonincreasing weight with each node adjacent to its sibling.
It can be proven that a binary prefix code is a Huffman code if and only if the code tree
has the sibling property.

In the FGK algorithm, we maintain a counter for source units and increment them by
the value INCR (usually INCR = 1). The increments cause possible reorganizations of
the associated Huffman tree. We explain the propagation of increasing a leaf weight in two
phases (they can be coalesced in a single traversal from the leaf to the root).

1. Let a Huffman tree T1 be the current code tree. Exchange certain subtrees of T1 in
such a way that each node o whose weight will be increased in the phase 2 obtains in
the new induced ordering the highest number among nodes with the same weights.
(So, if these nodes are ok, ok+1, . . . , ok+m, then o = ok+m.) Denote the resulting tree
by T2.

2. Propagate INCR in T2 from the leaf to the root.

The sibling property is preserved at the end of phase 2. In Algorithm 3.2, the more
complicated phase 1 is described.

Input: A current Huffman tree T1.

Output: A Huffman tree T2.

begin /* a recently processed node is in variable current */
current := o;
while current 6= root do begin

exchange the node in current (including a subtree that it defines)
with the node o′ which has the highest number among nodes with
the same weight; /* current contains o′ */
current = predecessor(current);

end
end

Algorithm 3.2: Adaptive Huffman coding (a core of FGK)
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Example 3.3. Suppose the set of source units {a,b, c,d, e, f}. The Huffman tree T1 shown
if Figure 3.2a) was formed in the FGK algorithm (numbers denote weights, bold numbers
denote the associated ordering). The next unit to be encoded is f. The unit f will be
encoded via T1 as 1011. After processing the phase 1, the resulting tree will be T2 (Figure
3.2b)). The phase 2 will cause increasing of weights as illustrated in Figure 3.2c). The
next occurrence of the unit f will be encoded as 001. 2
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Figure 3.2: Adapting of a Huffman tree

It is known result that FGK algorithm is never much worse than twice optimal. If
ALHS and ALHD are the average codewords lengths in static Huffman coding and dynamic
Huffman coding, respectively, then ALHD ≤ 2ALHS.

The time required for both the encoding and the decoding operations is O(d), where d
is the current length of the codeword.

Vitter proposed another adaptive Huffman algorithm which is known as the V algo-
rithm. This algorithm incorporates two improvements over the FGK algorithm:

• The number of interchanges on the phase 1 is limited to 1.

• In minimizes not only
n∑
i=1

d[i] ∗ p[i], but also
n∑
i=1

d[i] and max
i
d[i].

The intuitive explanation of the advantage of the V algorithm over the FGK algorithm
is as follows. As in the FGK algorithm, the code tree constructed by the V algorithm is
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the Huffman code tree for the prefix of the source units seen so far. The adaptive methods
do not assume that the relative frequencies of the prefix represent accurately the symbol
probabilities over the entire message. Therefore, the fact that the V algorithm guarantees a
tree of minimum height (height = maxi d[i]) and minimum external path length (

∑n
i=1 d[i])

implies that it is better suited for coding the next source unit of the message.
The average codeword length in the V algorithm is upper bounded by ALHS +1, which

is the optimum in the worst case among all one-path Huffman schemes.

3.3.2 Arithmetic coding

Suppose that we are given a message composed of source units over some finite alphabet.
Suppose also that we know the probabilities of each of the source units, and want to
represent the message using the smallest possible number of bits. It is a known result
that the Huffman coding gives results equal to the entropy of the message only if the
probabilities of the source units are negative powers of two. In other cases, the Huffman
coding only approximates the optimum. The reason is that the source units are assigned
discrete codewords, each integral number of bits long.

In arithmetic coding, the source units are not assigned a discrete codewords; instead,
an overall code for the whole source message is calculated. Thanks to that, the arithmetic
coding makes it possible to code the message arbitrarily close to its entropy.

Arithmetic coding is most useful for adaptive compression, especially with large alpha-
bets. For static and semistatic coding, in which the probabilities used for encoding are
fixed, Huffman coding is usually more suitable.

The basic idea of arithmetic coding is as follows. The source message is represented by
an interval [0, 1) on the real number line. Each unit of the message narrows the interval. As
the interval becomes smaller, the number of bits needed to specify it grows. A high-probable
unit narrows the interval less than a low-probable unit. In other words, high-probable units
contribute fewer bits to the coded string. The method begins with a list of source units
and their probabilities. The real number line is then partitioned into subintervals based
on cumulative frequencies.

The cumulative probability is defined as follows. Let a1, a2, . . . , an be an ordered se-
quence of source units with probabilities p1, p2, . . . , pn. Then the cumulative probability of
the source unit ai is the sum

∑i−1
j=1 pj.

Source unit Probability pi Cumulative probability cpi Subinterval
d 0.001 0.000 [0.000, 0.001)
b 0.010 0.001 [0.001, 0.011)
a 0.100 0.011 [0.011, 0.111)
c 0.001 0.111 [0.111, 1.000)

Table 3.2: Probabilities of the source units
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Example 3.4. In Table 3.2, probabilities of source units, their cumulative probabilities, and
corresponding subintervals are given. In Figure 3.3, the narrowing of interval is demon-
strated graphically for the message aabc. The message is coded as follows:
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Figure 3.3: Narrowing of the intervals

The initial interval is [0, 1). This interval is partitioned into subintervals using the
cumulative probabilities of source units. For the first input character a, the subinterval
[0.011, 0.111) is chosen for the new interval. This interval is then divided up using the
same proportion, and the subinterval [0.1001, 0.1101) is chosen for the second character
a. Continuing this way, subinterval [0.10011, 0.10101) is chosen for the third character b,
and subinterval [0.1010011, 0.1010100) for the last character c of the input message. The
message aabc is coded by this interval and any number in the interval can represented it.
The number 0.1010011 is quite suitable since it is the shortest representation of the above
mentioned interval. 2

An interval can be represented by a pair (L, S), where L is the lower bound of the
interval, and S is its length. Initially, L = 0 and S = 1. During coding one input
character, new values of L and S are computed as follows:

L = L+ S ∗ cpi
S = S ∗ pi

where cpi is the cumulative probability of the encoded unit (the i-th unit in the source
message), pi is the probability of the encoded unit.
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One potential problem is that code might be too long to work with after a while.
However, it is possible to output and discard parts as encoding proceeds. For example,
after encoding the second symbol a from Example 3.4, the interval is [0.1001, 0.1101).
Regardless of further narrowing, the output must begin with 1, so this part can be output
and forgotten.

During the decoding process, reverse operations are performed in comparison to encod-
ing. Decoding of one symbols proceeds in three steps:

1. Check to which interval the number N representing the encoded string falls.

2. Subtract the lower bound of the selected interval from number N .

3. Divide the result of step 2 by the length of the selected interval.

Example 3.5. Consider a decoder decoding the code 1010011. Since this number falls into
the interval [0.011, 0.111), the first character must be a. Then subtract the lower bound
of the interval:

0.1010011− 0.011 = 0.0100011

and divide the result by the length of the interval for a:

0.0100011/0.1 = 0.100011

This number falls again into the interval [0.011, 0.111). The second symbol is a again
and the procedure proceeds:

0.100011− 0.011 = 0.001011

0.001011/0.1 = 0.01011

This number falls into the interval [0.001, 0.011), so the next symbol is b.

0.01011− 0.001 = 0.00111

0.00111/0.01 = 0.111

This number falls into the interval [0.111, 1.000), and therefore the next symbol is c.

0.111− 0.111 = 0.000

0.000/0.001 = 0.000

At this point, the encoded message is decoded, but the decoder can proceed because 0
is the code for an arbitrary long sequence of d’s. Therefore, a special end-of input symbol
has to be used to fix the end of the input message explicitly. 2

This simple description of the idea of arithmetic coding has ignored a number of im-
portant problems for the implementation. Specifically, the process described above uses
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many multiplicative operations, which are expensive, and requires extremely high precision
arithmetic, since L and S must be maintained to many bits of precision. There is also a
question how best to calculate the cumulative probability distribution, and how best to
perform the arithmetic.

The implementation of arithmetic coding by Witten et al. from 1987 uses multiplicative
operations for calculating the bounds of the intervals, and arrays to store the cumulative
frequencies. The modeling and coding subsystems are separated, making the coder inde-
pendent on any particular model. The model acts as the “intelligence” of the compression
scheme, whereas the coder is the “engine room”, which converts a probability distribution
and a single symbol drawn from that distribution into a code. Improvements to the coder
yield a reduction in time or space usage; improvements to the model yield a decrease in
the size of the encoded data.

Moffat, Neal and Witten [22] revised the original algorithm, improving on it in several
ways. Their implementation has the following features:

• A more modular division into modeling, estimation, and coding subsystems.

• Changes to the coding procedure that reduce the number of multiplications and
divisions and which permit most of them to be done with low-precision arithmetic
(shifts and adds).

• Support for larger alphabet sizes and for more accurate representations of probabili-
ties.

• A reformulation of the decoding procedure that greatly simplifies the decoding loop
and improves decoding speed.

To store the cumulative frequencies, Fenwick implicit tree data structure is used (for
details, refer to [22]). In this representation, n words are required to represent an n-symbol
alphabet, and the frequency counts are calculated and updated in Θ(log n) time for each
symbol in the alphabet.

3.4 Dictionary methods

The dictionary coding is based on the observation that, in a particular text message, some
words are repeated. The dictionary coding replaces words (substring of a message) by
pointers to some dictionary.

A dictionary is a pair D = (M,C), where M is a finite set of phrases and C is a
mapping that maps M on a set of codewords. Phrases in the particular dictionary will be
the source units according to our terminology.

The selection of phrases for the dictionary may be performed by static, semiadaptive,
or adaptive approaches. A static dictionary method uses some fixed dictionary that is
prepared in advance. There are various ways how to build the dictionary. For example,
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the dictionary can consits of digrams (pairs of consecutive characters). In the semiadaptive
approach, the dictionary that is specific for the message is generated. A drawback is that
this dictionary must be a part of the compressed message. Hence, the dictionary itself
might be compressed too.

For later on, we will focus only on the adaptive methods. Almost all adaptive dictionary
methods of the data compression are based on two basic principles described by Lempel
and Ziv. These methods are labeled LZ77 and LZ78, respectively. LZ77 is referred to as
the sliding window method, LZ78 uses the growing dictionary.

3.4.1 Sliding window methods

LZ77 method uses pointers to a fixed-size window that precedes the coding position. There
are many variants of this method. For our purposes, we describe only the original version
of LZ77.

a b c b a b b a b b a a b a b a c b

lookahead bufferalready encoded part

Figure 3.4: Sliding window

Figure 3.4 illustrates the sliding window which is divided into a part of the already
encoded string and into a lookahead buffer. The typical size of the window is N ≤ 32768
and the size B of the buffer ranges from 10 to 256. Initially, the first N − B characters
of the window are spaces and the first B characters of the text are in the buffer. One
encoding step proceeds as follows:

The longest prefix p of the buffer is searched in the window. If such a substring s
starting in the allready encoded part is found, then the prefix of the buffer is encoded by a
triple (i, j, a), where i is the distance of the first symbol of the substring s from the buffer,
j is the length of the substring s, and a is the first character following the prefix p. The
window is then shifted by j + 1 characters to the right. If no substring which matches
some prefix in the buffer is found, then the triple (0, 0, a) is produced, where a is the first
character in the buffer. The substring s may overlap to the buffer.

In Figure 3.4, the substring found is aba. It starts two characters before the buffer.
The longest prefix is coded by the triple (2, 3, c). The window is then shifted by 3 + 1 = 4
characters.

The decoding is similar to the encoding. The decoder has the same window as the
encoder, but instead of searching for the longest prefix of the buffer, it copies the target of
the triple into the lookahead buffer.

In each encoding step, (N −B) ∗B character comparisons must be executed, unless a
more intricate algorithm for string matching (such as the Knuth-Morris-Pratt’s algorithm)
is used.
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The popular program Gzip uses LZ77 in conjunction with the Huffman coding for
compression of the literals and lengths. In the PKZip compressor, the LZSS method is
used. This method is a modification of LZ77 that includes the pointers into the output
only if they point to a substring that is longer than te pointer itself; otherwise the characters
themselves are included in the output. In order to make this possible, an extra bit must
be added to each pointer or character to distinguish between them.

3.4.2 Growing dictionary methods

The growing dictionary methods are based on the LZ78 method, which creates the dictio-
nary by inserting phrases from the message being compressed.

The LZ78 method divides the message into phrases. Each new phrase added to the
dictionary is composed of the longest phrase which already exists in the dictionary with
one additional symbol. Each such phrase is encoded by the index of its prefix appended by
the symbol. This new phrase is inserted into the dictionary and then it may be referenced
by the appropriate index. The encoding process in the LZ78 method is illustrated in the
Table 3.3.

Input a b ab c ba bab aa aaa
Phrases 1 2 3 4 5 6 7 8
Output (0, a) (0,b) (1,b) (0, c) (2, a) (5,b) (1, a) (7, a)

Table 3.3: Example of the LZ78 method

Table 3.4 presents the dictionary created during the compression.

Phrase Index Coded phrase
a 1 a
b 2 b
ab 3 1b
c 4 c
ba 5 2a
bab 6 5a
aa 7 1a
aaa 8 7a

Table 3.4: Generated dictionary

The output is composed of pairs (phrase index, symbol). Phrases containing only one
symbol are coded with the first component equal to zero.

The most timeconsuming part of the LZ78 method is searching out the dictionary. This
searching can be implemented using a trie data structure. For each phrase, there is a node
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in the trie containing its index. The phrase is on the path from the root to the node
associated with it. The decoder maintains the same table as the encoder.

If the space in the memory for the dictionary is exhausted, the dictionary is cleaned
out and the process of coding and decoding continues as if it started on a new input.

There are many variants of the LZ78 method. For example, the LZW method uses only
indexes for the output. This possible due to following two ideas:

• The dictionary is initiated with entries for all input symbols.

• The last symbol of each phrase is taken as the first symbol of the next phrase.

Program Compress which is available on Unix systems uses the LZC method based on
the LZW method. In LZC, the pointers are encoded by codes of the increasing size with
the number of phrases in the dictionary. Furthermore, LZC is monitoring the compression
ratio and once it begins to decline, the dictionary is cleaned out and creat again from the
initial setting.

3.5 Context modeling

The process of compression can be divided into two separate: modeling and coding. A
model is a representation of the data being compressed. Modeling can be seen as the
process of constructing this representation. During the coding, the information supplied
by the model is converted into a sequence of codebits.

Arithmetic coding provides optimal compression with respect to the model used. In
other words, given a model that provides information to the coder, arithmetic coding
produces a compressed representation with minimum length.

Given an optimal coding method, modeling becomes a key to effective data compression.
The context modeling techniques condition the probabilities of the source units on contexts
consisting of one or more preceding source units. These models are called finite-context
models. If just n preceding source units are used to determine the probability of the next
source unit, we speak of models of order-n.

A context model may be blended, i.e. incorporating several context models of different
orders. There are several methods how to effectively blend the models into a single one.
In weighted blending, the probability of next source unit is computed as a weighted sum
of the probabilities supplied by the individual submodels. In practice, this method turns
to be too slow, therefore a simpler blending strategy is often used. Instead of weighting
the probabilities of all the submodels, only one model is used. If it fails to predict the
upcoming source unit, an escape symbol is generated by the encoder, and a different model
(usually of lower order) is used. To make the escaping possible, the escape symbol should
be assigned some probability in each model.

Context modeling may be static or dynamic. A model is static if the information that
it carries remains unchanged during the compression. An adaptive (or dynamic) model
modifies the representation of the input as the compression proceeds.
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Finite-context models are a special case of the more sophisticated finite-state models,
which correspond to finite-state automata.

3.5.1 Dynamic Markov modeling

In [7], Horspool and Cormack proposed an adaptive modeling technique that combines
Markov modeling with the power of arithmetic coding. It starts with a simple initial finite
automaton and adds new states to it by an operation called state cloning.
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Figure 3.5: Fragment of finite automaton

In the finite automaton, frequency counts are added to each transition. These counts
show how many times the transition has been used.

We will the operation of the dynamic Markov modeling on an example. In Figure 3.5, a
fragment of a finite state automaton is presented. There are transitions from both states a
and b to state c, and transitions from state c to both states d and e. Whenever the model
enters state c, some contextual information is lost, because we forget whether we reached
state c from state a or b. But is is quite possible that the choice of next state, d or e, is
correlated with the previous state, a or b. A way to learn whether such a correlation exists
is to duplicate state c, generating a new state c’. This creates a revised Markov model as
shown in Figure 3.6. After this change to the model, the counts for transitions from c to
d or e will be updated only when state c is reached from a, whereas the counts for c’ to d
or e will be updated only when c’ is reached from b. Thanks to that, the model can now
learn the degree of correlation between the a, b states and the d, e states.
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Figure 3.6: Finite automaton after state cloning

The cloning operation is applicable when two conditions are satisfied. The first condi-
tion is that the state must have been visited a reasonable number of times. If it has been
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visited only a few times, the probability estimates for the next digit will be unreliable. Af-
ter the cloning operation, the estimates would be even less reliable. The second condition
is that there must be more than one predecessor for the state that is being cloned.

The last question concerns updating the frequency counts for the newly created tran-
sitions. The frequency counts from state c’ to states d and e are divided propotionally to
the counts from state b to c’ and from state a to c, respectively.
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Figure 3.7: Initial one state model

Different initial models may be used. The simplest is the one-state model a shown in
Figure 3.7. Regardless of the complexity of the initial model, all dynamic Markov models
have proven to be finite-context models.

3.5.2 Prediction by partial matching (PPM)

The prediction by partial matching (PPM) proposed by Cleary and Witten [6] represents a
state-of-the-art arithmetic coding method for compressing texts. In PPM, a suite of fixed
order context models with different order k, from 0 up to some predetermined maximum,
is used to predict upcoming characters.

For each model of order k, a note is kept of all characters that have followed every
subsequence of length k observed so far in the input, and the number of times that each
has occurred. Prediction probabilities are calculated from these counts.

The models are blended into a single one, and arithmetic coding is used to encode
the characters. The combination is achieved through the use of escape probabilities. By
default, the model with the largest k is used for coding. However, if a novel character is
encountered in this context, an escape symbol is transmitted to instruct the decoder to
switch to the model with the next smaller value of k. The process continues until a model
is reached in which the character is not novel. To ensure that the process terminates, a
(−1)-order model containing all characters in the coding alphabet is assumed.

Table 3.5 shows the state of the four models with k = 2, 1, 0, and −1 after the input
string abracadabra has been processed. For each model, all previously-occurring con-
texts are shown with their associated predictions, along with occurrence counts c and the
probabilities p that are calculated from them.

One potential problem is how to choose the probabilities of the escape events. The
method used in the example, commonly called PPMC, gives a count to the escape event
equal to the number of different symbols that have been seen in the context so far; thus,
for example, in the order 0 column of Table 3.5, the escape symbol receives a count of 5
because five different symbols have been seen in that context.
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Order k = 2 Order k = 1 Order k = 0 Order k = −1
Context c p Context c p Context c p Context c p
ab → r 2 2

3 a → b 2 2
7 a 5 5

16 A 1 1
|A|

Esc 1 1
3 c 1 1

7 b 2 2
16

d 1 1
7 c 1 1

16
ac → a 1 1

2 Esc 3 3
7 d 1 1

16
Esc 1 1

2 r 2 2
16

b → r 2 2
3 Esc 5 5

16
ad → a 1 1

2 Esc 1 1
3

Esc 1 1
2

c → a 1 1
2

br → a 2 2
3 Esc 1 1

2
Esc 1 1

3
d → a 1 1

2
ca → d 1 1

2 Esc 1 1
2

Esc 1 1
2

r → a 2 2
3

da → b 1 1
2 Esc 1 1

3
Esc 1 1

2

ra → c 1 1
2

Esc 1 1
2

Table 3.5: PPM model after processing the string abracadabra

Suppose that the character following abracadabra were d. This is not predicted from
the current k = 2 context ra. Therefore, an escape event occurs in context ra, which is
coded with a probability of 1

2 , and then the k = 1 context a is used. This does predict the
desired symbol through the prediction a → d, with probability 1

7 .
If the next character were one that had never been encountered before, for example

t, escaping would take place repeatedly right down to the base level k = −1. Once this
level is reached, all symbols are equiprobable. Assuming a 256 character alphabet, the t
is coded with probability 1

256 at the base level.
It may seem that the performance of PPM should improve when the maximum context

length is increased, because the predictions are more specific. However, it follows from
the experimental results that the best compression is achieved when a maximum context
length is 5 and that it deteriorates when the context is increased beyond this. The reason
is that while longer contexts do provide more specific predictions, they often do not give
any prediction at all. This causes the escape mechanism to be used more frequently to
reduce the context length down. And each escape operation carries a penalty in coding
effectiveness.
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Figure 3.8: Context trie for the string abracadabra

Cleary, Teahan and Witten [5] have improved PPM to allow the context length to vary
depending on the coding situation. This improved version, called PPM*, makes it possible
to store the model in a way that gives rapid access to predictions based on any context,
eliminating the need for an arbitrary bound to be imposed.

The main problem associated with the use of unbounded contexts is the amount of
memory that is necessary to store them. It is impractical to extend PPM to models with a
substantially higher order because of the exponential growth of the memory that is required
as k increases. For PPM*, the problem is crucial, as it demands the ability to access all
possible contexts right back to the very first character. As a solution to this, PPM* uses
a trie structure combined with pointers back to the input string for the representation of
the contexts. The resulting data structure, called a context trie, allows to save substantial
space. Figure 3.8 shows the state of the context trie after the input string abracadabra
has been processed.

It follows from the experimental results that PPM* provides a performance improve-
ment over PPM, but at the expense of slower run.
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3.5.3 Block-sorting compression

The interesting block-sorting compression algorithm introduced by Burrows and Wheeler
[2] applies a reversible transformation to a block of input text. The transformation does not
itself compress the data, but reorders it to make it easy to compress with simple algorithms
(such as move-to-front coding). The algorithm is not adaptive; first the complete input
sequence is transformed and then the resulting output is encoded. The algorithm is effective
because the transformed string contains more regularities than the original one.

The block-sorting algorithm can be viewed as a context-based method, with no prede-
termined upper bound to context length.3 To demonstrate the operation of the algorithm,
we use abraca as the input string.
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Figure 3.9: Block-sorting compression of abraca

The algorithm first generates the matrix of strings M (see Figure 3.9), then sorts the
reversed strings alphabetically to produce the matrix M ′. Two parameters are extracted
from the sorted matrix. The first, I, is an integer that indicates which row number corre-
sponds to the original string. The second, L, is the character string that constitutes the
first column. In our example, I = 1 and L = caraab. The input string is completely spec-
ified by I and L since there exists a reverse transformation for reconstructing the original
(this transformation if described in [2] in detail). Moreover, L can be transmitted very
economically because it has the property that the same letters often fall together in to long
runs.

The vector L is encoded using a move-to-front strategy and Huffman or arithmetic
coder. The move-to-front algorithm works as follows. Define a vector of integers R[0],
. . . , R[N − 1], which are the codes for the characters L[0], . . . , L[N − 1]. Initialize a
list Y of characters to contain each character of the source alphabet exactly once. For
each i = 0, . . . , N − 1, set R[i] to the number of characters preceding character L[i] in the
list Y , then move character L[i] to the front of Y . Taking Y = [a,b, c, r] initially, and
L = caraab, we compute the vector R = (2, 1, 3, 1, 0, 3).

3To see why is this true, refer for example to [5].
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Huffman or arithmetic coding is applied to the elements of R, treating each element
as a separate token to be coded. Any coding technique can be applied as long as the
decompressor can perform the inverse operation. Call the output of this coding process
OUT . The final output of the block-sorting algorithm is the pair (OUT, I), where I is the
number of the row in the matrix M ′ computed previously.

3.6 Syntactical methods

If the source messages belong to some formal language, we can attempt to create a grammar
that describes this language. With the help of such a grammar, it is possible to encode
the source messages efficiently.

Two main approaches can be used in the syntactical compression. In one of these
approaches, one fixes a grammar G, known to both encoder and decoder, such that the
language generated by G contains all of the data strings to be compressed. To compress
a particular data string, one then compresses the derivation tree. In the second approach,
a different grammar Gx is assigned to each data string x, so that the language generated
by Gx is {x}. If the data string x has to be compressed, the encoder transmits codebits to
the decoder that allow the reconstruction of the grammar Gx.

We will focus on techniques that represent the second group of the syntactical methods.
The following section is devoted to a detailed description of so called grammar-based
codes, introduced recently in [16, 15]. After that, we briefly describe a similar compression
technique that is represented by the Sequitur algorithm [24, 25].

3.6.1 Grammar-based codes

Recently, Kieffer and Yang [16, 15] have proposed a new class of lossless source codes called
grammar-based codes. In the grammar-based code, a data sequence to be compressed is
first converted into a context-free grammar by so called grammar transform, and then
losslessly encoded using arithmetic code.

coder
arithmeticgrammar

transform
.............................
.........
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.........
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.........

context-free

grammar G

binary

codeword

input data

X

Figure 3.10: Structure of a grammar-based code

The class of grammar-based codes is broad enough to include various other codes, such
as Lempel-Ziv types of codes, as special cases.



3.6 Syntactical methods 32

3.6.1.1 Basic notions

Let A be the source alphabet of size at least 2. Fix a countable set S = {s0, s1, s2, . . .}
of symbols, disjoint from A. Symbols in S will be called variables ; symbols in A will be
called terminal symbols. For any j ≥ 1, let S(j) = {so, s1, . . . , sj−1}.

For our purposes, a context-free grammar G is a mapping from S(j) to (S(j)∪A)+ for
some j ≥ 1. The set S(j) shall be called the variable set of G. The variable s0 acts as the
start symbol.

The mapping si → G(si) (0 ≤ i < j) is called a production rule. The grammar G is
completely described by the set of its production rules.

Let G be a context-free grammar. If α and β are strings from (S(j) ∪ A)+, we shall
write:

• α G→ β if there are strings α1, α2 and a production rule si → G(si) such that
(α1, si, α2) is a parsing of α and (α1, G(si), α2) is a parsing of β.

• α G⇒ β if there exist a sequence of strings α1, α2, . . . , αk such that α = α1
G→ α2, α2

G→
α3, . . . , αk−1

G→ αk = β.

The set {x ∈ A+ : s0
G⇒ x} represents the language generated by the grammar G and

shall be denoted as L(G).
We say that a context-free grammar G is admissible if the following properties hold:

1. G is determistic (in other words, for each variable si in the variable set of G, there
is exactly one production rule whose left member is si).

2. The empty string is not the right member of any production rule in G.

3. L(G) is nonempty.

4. G has no useless symbols. This means that for each symbol x ∈ S(j) ∪ A, x 6= s0,
there exist finitely many strings α1, α2, . . . , αn such that at least one of the strings
contains x and s0 = α1

G→ α2, α2
G→ α3, . . . , αn−1

G→ αn ∈ L(G).

For any deterministic grammar G, the language L(G) is either empty or consists of
exactly one string. If G is an admissible grammar, there exists a unique string x ∈ A+

such that L(G) = {x}. We shall say that G represents x, and write x→ Gx.
Let G be an admissible grammar with variable set S(j). The size |G| of G is defined

as the sum:

|G| ∆=
∑

v∈S(j)

|G(v)|

where |G(v)| denotes the length of the string G(v) ∈ (S(j) ∪ A)+.
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Example 3.6. Let A = {0, 1}. We present an admissible grammar G with the variable
set {s0, s1, s2, s3} which represents the sequence x = 00101101101010101110 and its size is
equal to 14.

s0 → 0s3s2s1s1s310

s1 → 01

s2 → s11

s3 → s1s2

2

Remark. Admissible grammars have one important property: we need only list the
production rules to fully specify the grammar, because the terminal alphabet, as well as
the variable set of the grammar and the start symbol, can be uniquely inferred from the
production rules. The set of variables will consist of the left members of the production
rules. The terminal alphabet will consist of the symbols which appear in the right members
of the production rules and which are not variables. Finally, the start symbol is the unique
variable that doesn’t appear in the right members of the production rules.

3.6.1.2 Reduction rules

It is obvious that for a string x ∈ A+, especially when |x| is large, there are many admissible
grammars that represent x. Some of these grammars can be more compact than others
in the sense of having smaller size |G|. Consider for example the grammar from the
Example 3.6 and a (rather simplistic) grammar with the only one production rule: s0 →
00101101101010101110. Both grammars represent the same data string, but the size of the
second grammar is 20!

Since the size of G is influential in the performance of the grammar-based code, the
grammars should be designed such that the following properties hold:

(a.1) The size |G| should be small enough, compared to the length of x.

(a.2) Strings represented by distinct variables of G are distinct.

(a.3) The frequency distribution of variables and terminal symbols of G in the range of
G should be such that effective arithmetic coding can be accomplished later on.

Kieffer and Yang have proposed a set of reduction rules which, when applied repeatedly
to an admissible grammar G, lead to another admissible grammar G′ which represents the
same data string and satisfies the properties (a.1), (a.2), and (a.3) in some sense. These
reduction rules will be described in the following text.
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Reduction Rule 1. Let s be an variable of an admissible grammar G that appears only
once in the range of G. Let s′ → αsβ be the unique production rule in which s appears on
the right. Let s→ γ be the production rule corresponding to s. Reduce G to the admissible
grammar G′ obtained by removing the production rule s → γ from G and replacing the
production rule s′ → αsβ with the production rule s′ → αγβ. The resulting admissible
grammar G′ represents the same sequence x as does G.

Example 3.7. Consider the grammar G with variable set {s0, s1, s2} given by {s0 →
s1s1, s1 → s21, s2 → 010}. Applying Reduction Rule 1, one gets the grammar G′ with
variable set {s0, s1} given by {s0 → s1s1, s1 → 0101}. 2

Reduction Rule 2. Let G be an admissible grammar possessing a production rule of form
s→ α1βα2βα3, where the length of β is at least 2. Let s′ ∈ S be a variable which is not in
G. Reduce G to the grammar G′ obtained by replacing the production rule s→ α1βα2βα3

of G with s → α1s
′α2s

′α3, and by appending the production rule s′ → β. The resulring
grammar G′ includes a new variable s′ and represents the same sequence x as does G.

Example 3.8. Consider the grammar G with variable set {s0, s1} given by {s0 → s101s101,
s1 → 11}. Applying Reduction Rule 2, one gets the grammar G′ with variable set
{s0, s1, s2} given by {s0 → s1s2s1s2, s1 → 11, s2 → 01}. 2

Reduction Rule 3. Let G be an admissible grammar possessing two distinct production
rules of form s → α1βα2 and s′ → α3βα4, where β is of length at least 2, either α1 or α2

is not empty, and either α3 or α4 is not empty. Let s′′ ∈ S be a variable which is not in G.
Reduce G to the grammar G′ obtained by doing the following: Replace rule s→ α1βα2 by
s→ α1s

′′α2, replace rule s′ → α3βα4 by s′ → α1s
′′α2, and append the new rule s′′ → β.

Example 3.9. Consider the grammar G with variable set {s0, s1, s2} given by {s0 →
s10s2, s1 → 10, s2 → 0s10}. Applying Reduction Rule 3, one gets the grammar G′ with
variable set {s0, s1, s2, s3} given by {s0 → s3s2, s1 → 10, s2 → 0s3, s3 → 11}. 2

Reduction Rule 4. Let G be an admissible grammar possessing two distinct production
rules of the form s→ α1βα2 and s′ → β, where β is of length at least 2, and either α1 or
α2 is not empty. Reduce G to the grammar G′ obtained by replacing the production rule
s→ α1βα2 with the production rule s→ α1s

′α2.

Example 3.10. Consider the grammar G with variable set {s0, s1, s2} given by {s0 →
s201s1, s1 → s20, s2 → 11}. Applying Reduction Rule 4, one gets the grammar G′ with
variable set {s0, s1, s2} given by {s0 → s11s1, s1 → s20, s2 → 11}. 2

Reduction Rule 5. Let G be an admissible grammar in which two variables s and s′

represent the same subsequence of the data string represented by G. Reduce G to the
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grammar G′ obtained by replacing each appearance of s′ in the range of G by s and
deleting the production rule corresponding to s′. The grammar G′ may not be admissible
since some further variables of G′ may become useless. If so, further reduce G′ to the
admissible grammar G′′ obtained by deleting all production rules corresponding to useless
variables of G′. Both G and G′′ represent the same data string.

Remark. It is possible to define more reduction rules than Reduction Rules 1-5. For
example, if the right members of the production rules of the admissible grammar G contain
non-overlapping substrings α 6= α′ representing the same subsequence of the data string
represented by G, one can reduce G by replacing α and α′ with a new variable s, while
introducing a new production rule (either s → α or s → α′). However, this new rule
is somewhat difficult to implement in practice. Kieffer and Yang limited themselves to
Reduction Rules 1-5 because they are simple to implement, and yield grammars which are
sufficiently reduced.

An admissible grammar G is said to be irreducible if none of Reduction Rules 1 to 5 can
be applied to G to get a new admissible grammar. Each irreducible grammar G satisfies
the following properties:

(b.1) Each variable of G other than s0 (the start symbol) appears at least twice in the
range of G.

(b.2) There is no non-overlapping repeated pattern of length greater than or equal to 2
in the range of G.

(b.3) Each distinct variable of G represents a distinct sequence from A.

Property (b.3) holds due to Reduction Rule 5 and is very important to the compression
performance of a grammar-based code. A grammar-based code for which the transformed
grammar does not satisfy the property (b.3), may give poor compression results and can
not be guaranteed to be universal.

3.6.1.3 Grammar transforms

Let x be a sequence from A which is to be compressed. A grammar transform is a transfor-
mation that converts x into an admissible grammar that represents x. For our purposes,
we are interested particularly in a grammar transform that starts from the grammar G
consisting of only one production rule s0 → x, and applies repeatedly Reduction Rules 1
to 5 in some order to reduce G into an irreducible grammar G′. Such a grammar transform
is called an irreducible grammar transform. To compress x, the corresponding grammar-
based code then uses a zero order arithmetic code to compress the irreducible grammar
G′.

There are different grammar transforms because of the different orders via which the
reduction rules are applied; this results in different grammar-based codes. However, all
these grammar-based codes are universal, as proved by Kieffer and Yang:
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Theorem 1. Let G be an irreducible grammar representing a sequence x from A. The
size |G| of G divided by the length |x| of x goes to 0 uniformly as |x| increases. Specifically,

max{|G| : G is irreducible grammar representing x, x ∈ An} = o(n)

Proof. Refer to [16]. 2

Theorem 2. Any grammar-based code with an irreducible grammar transform is universal
in the sense that for any stationary, ergodic source {Xi}∞i=0, the compression rate resulting
from using the grammar-based code to compress the first segment X1X2 . . . Xn of length
n converges, with probability one, to the entropy rate of the source as n goes to infinity.

Proof. Refer to [16]. 2

The irreducible grammar-based codes combine the power of string matching (Reduction
Rules 2 to 4) with that of arithmetic coding, which is the main reason why they are
universal.

3.6.1.4 A greedy irreducible grammar transform

In this section, we describe the greedy irreducible grammar transform proposed by Kieffer
and Yang, which can construct sequentially a sequence of irreducible grammars from which
the original data sequence can be recovered incrementally.

Let x1x2 . . . xn be a sequence fromA which has to be compressed. The greedy irreducible
grammar transform parses the sequence x sequentially into non-overlapping substrings
{x1, x2 · · ·xn2 , . . . , xnt−1+1 · · ·xnt} and builds sequentially an irreducible grammar for
each x1 · · ·xni , where 1 ≤ i ≤ t, n = 1, and nt = n. The first substring is x1 and the
corresponding irreducible grammar G1 consists of only one production rule s0 → x1.

Suppose that x1, x2 · · ·xn2 , . . . , xni−1+1 · · ·xni have been parsed off and the correspond-
ing irreducible grammar Gi for x1 · · ·xni has been built. Suppose that the variable set of
Gi is equal to S(ji) = {s0, s1, . . . , sji−1}, where j1 = 1. The next substring xni+1 · · ·xni+1 is
the longest prefix of xni+1 · · ·xn that can be represented by sj for some 0 < j < ji if such
a prefix exists. Otherwise, xni+1 · · ·xni+1 = xni+1 with ni+1 = ni + 1. If ni+1 − ni > 1 and
xni+1 · · ·xni+1 is represented by sj, then append sj to the right end of Gi(s0); otherwise,
append the symbol xni+1 to the right end of Gis0.

The resulting grammar is admissible, but not necessarily irreducible. Apply Reduction
Rules 1 to 5 to reduce the grammar to an irreducible grammar Gi+1. Then Gi+1 represents
x1 · · ·xni+1 . Repeat the described procedure until the whole sequence x is processed. The
final irreducible grammar Gt represents x.

Define a function I : {1, . . . , t} → {0, 1} as follows: I(1) = 0, and for any i > 1, I(i) is
equal to 0 if Gi is equal to the apended Gi−1, and 1 otherwise.

Since only one symbol from S(ji)∪A is appended to the end of Gi(s0), not all reduction
rules can be applied to get Gi+1. In fact, the order via which reduction rules are applied
is unique. The following theorem shows why this is the case.
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Theorem 3. Let α be the last symbol of Gi(s0). Let β be the symbol sj that represents
xni+1 · · ·xni+1 if ni+1−ni > 1, and xni+1 itself otherwise. Let G′i be the admissible grammar
obtaining by appending β to the end of Gi(s0). Then the following steps specify how to
get Gi+1 from G′i.

Case 1 The pattern αβ does not appear in two non-overlapping positions in the range of
G′i. In this case, G′i is irreducible and hence Gi+1 is equal to G′i.

Case 2 The pattern αβ appears in two non-overlapping positions in the range of G′i and
I(i) = 0. In this case, apply Reduction Rule 2 once if the pattern αβ repeats itself in
G′i(s0), and Reduction Rule 3 once otherwise. The resulting grammar is irreducible
and hence equal to Gi+1. The variable set of Gi+1 is S(ji+1) with ji+1 = ji + 1, and
the newly created production rule is sji → αβ.

Case 3 The pattern αβ appears in two non-overlapping positions in the range of G′i and
I(i) = 1. In this case, apply Reduction Rule 2 followed by Reduction Rule 1 if the
pattern αβ repeats itself in G′i(s0), and Reduction Rule 3 followed by Reduction
Rule 1 otherwise. The resulting grammar is irreducible and hence equal to Gi+1.
The variable set of Gi+1 is the same as that of Gi with ji+1 = ji, and Gi+1(sji+1−1) is
obtained by appending β to the end of Gi(sji−1)

Proof. Refer to [15]. 2

Example 3.11. We demonstrate the greedy irreducible transform on an example. Let
A = {0, 1} and x = 10011100010001110001111111000. It is easy to see that the first three
parsed phrases are 1, 0, and 0. The corresponding irreducible grammars G1, G2, and G3

are given by {s0 → 1}, {s0 → 10}, and {s0 → 100}, respectively. Since j3 = 1, the fourth
parsed phrase is x4 = 1. Appending the symbol 1 to the end of G3(s0), we get an admissible
grammar G′3 given by {s0 → 1001}. G′3 itself is irreducible, so none of Reduction Rules 1
to 5 can be applied and G4 is equal to G′3. Similarly, the fifth and sixth parsed phrases are
x5 = 1 and x6 = 1, respectively; G5 and G6 are given respectively by {s0 → 10011} and
{s0 → 100111}. The seventh parsed phrase is x7 = 0. Appending the symbol 0 to the end
of G6(s0), we get an admissible grammar G′6 given by

s0 → 1001110

G′6 is not irreducible any more since there is a non-overlapping repeated pattern 10 in the
range of G′6. At this point, only Reduction Rule 2 is applicable. Applying Reduction Rule
2 once, we get an irreducible grammar G7 given by

s0 → s1011s1

s1 → 10
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Since the sequance from A represented by s1 is not a prefix of the remaining part of x, the
next parsed phrase is x8 = 0. Appending the symbol 0 to the end of G7(s0), we get an
admisible grammar G′7 given by

s0 → s1011s10

s1 → 10

G′7 is not irreducible. Applying Reduction Rule 2 once, which is the only applicable
reduction rule at this point, we get a grammar G′′7

s0 → ss11ss
s1 → 10

s2 → s10

In the above, the variable s1 appears only once in the range of G′′7. APplying Reduction
Rule 1 once, we get the irreducible grammar G8:

s0 → s111s1

s1 → 100

From G7 to G8, we have applied Reduction Rule 2 followed by Reduction Rule 1. Based
on G8, the next two parsed phrases are x9 = 0 and x10x11x12 = 100, respectively. The
irreducible grammar G9 is given by

s0 → s111s10

s1 → 100

and the grammar G10 is given by

s0 → s111s10s1

s1 → 100

Note that from G9 to G10, we simply append the symbol s1 to the end of G9(s0) since the
phrase x10x11x12 is represented by s1. The eleventh parsed phrase is x13 = 0. Appending
0 to the end of G10(s0) and then applying Reduction Rule 2 once, we get G11

s0 → s111s2s2

s1 → 100

s2 → s10

The twelfth parsed phrase is x14 = 1 and G12 is obtained by simply appending 1 to the
end of G11(s0). The thirteen parsed phrase is x15 = 1. Appending 1 to the end of G12(s0)
and then applying Reduction Rule 2 once, we get G13

s0 → s1s3s2s2s3

s1 → 100

s2 → s10

s3 → 11
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The fourteen parsed phrase is x16x17x18x19 = 1000, which is represented by s2. Appending
s2 to the end of G13(s0) and then applying Reduction Rule 2 followed by Reduction Rule
1, we get G14

s0 → s1s3s2s3

s1 → 100

s2 → s10

s3 → 11s2

The fifteenth parsed phrase is x20 = 1, and G15 is obtained by appending the symbol 1 to
the end of G14(s0). The sixteenth parsed phrase is x21 = 0. Appending the symbol 1 to
the end of G15(s0) and then applying Reduction Rule 3 once, we get G15

s0 → s1s3s2s3s4

s1 → 100

s2 → s10

s3 → s4s2

s4 → 11

The seventeenth parsed phrase is x22x23 = 11 and G17 is obtained by appending s4 to the
end of G16(s0). The final parsed phrase is x24 · · ·x29 = 111000 and G18 is obtained by
appending s3 to the end of G17(s0). In summary, the string x is parsed into {1, 0, 0, 1,
1, 1, 0, 0, 0, 100, 0, 1, 1, 1000, 1, 1, 11, 111000} and transformed into the irreducible
grammar G18

s0 → s1s3s2s3s4s4s3

s1 → 100

s2 → s10

s3 → s4s2

s4 → 11

2

Kieffer and Yang proposed three algorithms4 based on the greedy irreducible grammar
transform: a hierarchical algorithm, a sequential algorithm, an an improved sequential
algorithm. Each of the algorithms uses the irreducible grammar transform to construct the
irreducible grammar Gt which is encoded by the arithmetic coding with dynamic alphabet.

The following theorem gives the redundancy estimates for the hierarchical, the sequen-
tial, and the improved sequential algorithms.

4Prior to that, they had sketched yet another algorithm based on enumerative coding (see [23] for
further details) in [16]. However, this algorithm is less intuitive and not very efficient.
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Theorem 4. The worst case redundancies of the hierarchical, the sequential, and the
improved sequential algorithms, among all individual sequences x ∈ A+, |x| = n, are upper
bounded by

c
log log n

log n

where c is a constant.

Proof. Refer to [15]. 2

It follows from simulation results5 in [15] that the hierarchical algorithm is greatly out-
performed by both the sequential and the improved sequential algorithms. Moreover, the
sequential algorithms make it possible to parse and encode the input sequence simultane-
ously, as opposed to the hierarchical algorithm which encodes the input sequence only after
it was completely processed. The improved sequential algorithm yields the best results,
but is the most difficult to implement efficiently.

In the following sections, we describe the principles of the three algorithms.

3.6.1.5 Hierarchical algorithm

Let x ∈ A+ be a sequence to be compressed. Let Gt be the final irreducible grammar for x
furnished by the irreducible grammar transform. In the hierarchical algorithm, a zero order
arithmetic code with a dynamic alphabed is used to encode Gt (or its equivalent form).
After receiving the binary codeword, the decoder recovers Gt (or its equivalent form) and
reconstructs x from it.

To illustrate the operation of the hierarchical algorithm, we refer to Example 3.11.
The final irreducible grammar for the sequence x in Example 3.11 is G18. To encode G18

efficiently, it is first converted into its canonical form Gg
18 given by

s0 → s1s2s3s2s4s4s2

s1 → 100

s2 → s4s3

s3 → s10

s4 → 11

Note that Gg
18 and G18 still represent the same sentence. The difference between Gg

18

and G18 is that the following property holds for Gg
18, but not for G18:

(c.1) If we read Gg
18(si) from left to right and from top (i = 0) to bottom (i = 4), then

for any j ≥ 1, the first appearance of sj always precedes that of sj+1.
5There was no implementation of the individual algorithms available by the time when [15] was pub-

lished.
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To encode Gg
18, we concatenate Gg

18(s0), Gg
18(s1), . . . , Gg

18(s4) in the indicated order,
inserting symbol e at the end of Gg

18(s0), and for any j ≥ 1 satisfying |Gg
18(si)| > 2,

inserting symbol b at the beginning of Gg
18(si) and symbol e at the end of Gg

18(si), where
symbols b and e are assumed not to belong to S ∪ A. This gives rise to the following
sentence from the alphabet S ∪ A ∪ {b, e}:

s1s2s3s2s4s4s2eb100es4s3s1011 (3.1)

Since Gg
18 satisfies the property (c.1), we can take advantage of this. Let s be a symbol

which is not in S ∪ A ∪ {b, e}. For each i ≥ 1, replace the first occurrence of si in the
sequence 3.1 by s:

ssss2ss4s2eb100es4s3s1011 (3.2)

This sequence will be called the sequence generated from G18 (or its canonical form
Gg

18). We can get the sequence 3.1 from 3.2 by simply replacing the ith s in 3.2 by si. And
from 3.1, it is easy to reconstruct the grammar Gg

18.
To compress Gg

18 (or x), we encode the sequence generated from G18 using a zero order
arithmetic coder with dynamic alphabet. We associate each symbol β ∈ S ∪ A ∪ {b, e, s}
with a counter c(β). Initially, c(β) is set to 1 if β ∈ A ∪ {b, e, s} and 0 otherwise. The
initial alphabet used by the arithmetic coder is A∪{b, e, s}. Each symbol β in the sequence
generated from G18 is encoded as follows:

1. Encode β by using the probability

c(β)/
∑
α

c(α)

where the summation is taken over A∪{b, e, s}∪ {s1, . . . , si}, and i is the number of
times that s occurs before the position of this β.

2. Increase the counter c(β) by 1.

3. If β = s, increase the counter c(s(i+ 1)) from 0 to 1, where i is defined in Step 1.

Repeat this procedure until the whole sequence x is processed and encoded.

3.6.1.6 Sequential algorithm

In the sequential algorithm, the data sequence x is encoded sequentially by using a zero
order arithmetic code with a dynamic alphabet to encode the sequence of parsed phrases
x1, x2 · · ·xn2 , . . . , xnt−1+1 · · ·xnt . We associate each symbol β ∈ S ∪ A with a counter
c(β). Initially, c(β) is set to 1 if β ∈ A and 0 otherwise. At the beginning, the alphabet
used by the arithmetic code is A. The first parsed phrase x1 is encoded using a probability
c(x1)/

∑
β∈A c(β). The the counter c(x1) increases by 1.
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Suppose that x1, x2 · · ·xn2 , . . . , xni−1+1 · · ·xni have been parsed off and encoded and
that all corresponding counters have been updated. Let Gi be the corresponding ir-
reducible grammar for x1 · · ·xni with the variable set S(ji) = {s0, s1, . . . , sji−1}. Let
xni+1 · · ·xni+1 be parsed off by the greedy sequential grammar transform and represented by
β ∈ {s1, . . . , sji−1}. Encode β and update the relevant counters according to the following
steps:

1. The alphabet used at this point by the arithmetic code is {s1, . . . , sji−1}∪A. Encode
xni+1 · · ·xni+1 by using the probability

c(β)/
∑

α∈S(ji)∪A
c(α)

2. Increase c(β) by 1.

3. Get Gi+1 from the appended Gi as in the greedy irreducible grammar transform.

4. If ji+1 > ji, i.e Gi+1 includes new variable sji , increase the counter c(sji) by 1.

Repeat this procedure until the whole sequence x is processed and encoded.

3.6.1.7 Improved sequential algorithm

The encoding of the sequence of parsed phrases in the sequential algorithm does not utilize
the structure of the irreducible grammar Gi, 1 ≤ i ≤ t. Since Gi is known to the decoder
before encoding the (i + 1)th parsed phrase, the structure of Gi can be used as context
information to reduce the codebits for the (i+ 1)th parsed phrase.

Each symbol γ ∈ S ∪ A is associated with two lists L1(γ) and L2(γ). The list L1(γ)
consists of all symbols η ∈ S ∪ A such that the following properties are satisfied:

(d.1) The pattern γη appears in the range of Gi.

(d.2) The pattern γη is not the last two symbols of Gi(s0).

(d.3) There is no variable sj of Gi such that Gi(sj) is equal to γη.

The list L2(γ) consists of all symbols η ∈ S ∪ A such that properties (d.1) and (d.2)
hold. Let α be the last symbol of Gi(s0). Let the (i+ 1)th parsed phrase xni+1 · · ·xni+1 be
represented by β ∈ {s1, . . . , sji−1} ∪ A. Recall from Section 3.6.1.4 that I(i) = 0 is equal
to 0 if Gi is equal to the appended Gi−1, and 1 otherwise. From Theorem 3, it follows
that when I(i) = 0 and I(i + 1) = 0, the symbol β appears in the list L1(α), and hence
one can simply send the index of β in the list L1(α) to the decoder. When I(i) = 1 and
I(i+ 1) = 1, β is the only element in the list L1(α) and thus no information has to be sent
to the decoder. Therefore, if we transmit the bit I(i + 1) to the decoder, we can use the
bit I(i+ 1) and the structure of Gi to improve the encoding of β.
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In addition to the counters c(γ), γ ∈ S ∪A, improved sequential algorithm defines new
counters c(0, 0), c(0, 1), c(1, 0), c(1, 1), and ĉ(γ). The counters c(0, 0), c(0, 1), c(1, 0), and
c(1, 1) are used to encode the sequence {I(i)}ti=1. Initially, they are all equal to 1. The
(i+1)th parsed phrase is encoded by the counters ĉ(γ) whenever I(i) = 0 and I(i+1) = 1,
and by by the counters c(γ) whenever I(i+ 1) = 0. As in the case of c(γ), initially ĉ(γ) is
1 if γ ∈ A and 0 if γ ∈ S.

The first three parsed phrases are encoded as in the sequential algorithm since they are
x1, x2, and x3. Also, I(1), I(2), and I(3) are all 0 and hence there is no need to encode
them. Starting with the fourth phrase, we first encode I(i + 1), and then use I(i + 1) as
side information and the structure of Gi as context information to encode the (i + 1)th
parsed phrase.

Suppose that x1, x2 · · ·xn2 , . . . , xni−1+1 · · ·xni have been parsed off and encoded and
that all corresponding counters have been updated. Let Gi be the corresponding irreducible
grammar for x1 · · ·xni with the variable set S(ji) = {s0, s1, . . . , sji−1}. Let α be the last
symbol of Gi(s0). Let xni+1 · · ·xni+1 be parsed off by the greedy sequential grammar
transform and represented by β ∈ {s1, . . . , sji−1}. Encode I(i+ 1) and β, and update the
relevant counters according to the following steps:

1. Encode I(i+ 1) by using the probability

c(I(i), I(i+ 1))
c(I(i), 0) + c(I(i), 1)

2. Increase c(I(i), I(i+ 1)) by 1.

3. If I(i+ 1) = 0, encode β by using the probability

c(β)/
∑

γ∈S(ji)∪A−L2(α)

c(γ)

and increase x(β) by 1. If I(i) = 0 and I(i+1) = 1, encode β by using the probability

ĉ(β)/
∑

γL1(α)

ĉ(γ)

and then increase ĉ(β) by 1. On the other hand, if I(i) = 1 and I(i + 1) = 1, no
information is sent since L1(α) contains only one element and the decoder knows
what β is.

4. Get Gi+1 from the appended Gi as in the greedy irreducible grammar transform.
Update L1(γ) and L2(γ) accordingly, where γ ∈ S(ji+1) ∪ A.

5. If ji+1 > ji, i.e. Gi+1 includes new variable sji , increase both c(sji) and ĉ(sji) by 1.

Repeat this procedure until the whole sequence x is processed and encoded.
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3.6.2 Sequitur

In [24, 25], Nevill-Manning and Witten presented a syntactical compression method that is
in many ways similar to the grammar-based codes discussed in the previous section. Their
algorithm, called Sequitur, sequentially generates a context-free grammar that uniquely
represents the input string. Compared to the grammar-based coding, the algorithm is
rather simple and can be stated concisely in the form of two constraints on the generated
context-free grammar:

1. No pair of adjacent smbols appears more than once in the grammar.

2. Every production rule is used more than once.

Property 1 says that every digram (i.e. a pair of two adjacent symbols) in the grammar
is unique, and is referred to as digram uniqueness. Property 2 ensures that the production
rules are useful, and is called rule utility.

Sequitur processes the input data incrementally, and its operation consists of ensuring
that both constraints hold. When a new symbol is observed, it is appended to the root
production rule of the grammar. If the new symbol causes the digram uniqueness constraint
to be violated, a new production rule is formed. In the case that the rule utility constraint
is violated, the useless production rule is deleted.

Example 3.12. We illustrate the operation of Sequitur on the string abcdbcabcd. Suppose
that the string abcdbcabc has been parsed off. The grammar representing this string looks
as follows:

S → BdaB

A → bc

B → aA

After appending the symbol d, we get the grammar given by

S → BdaBd

A → bc

B → aA

The digram Bd appears two times in the grammar, and the digram uniqueness constraint
is violated. Therefore a new production rule C is introduced:

S → CAC

A → bc

B → aA

C → Bd
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This time, the rule utility constraint is violated since the production rule B is used only
once. Therefore B is removed from the grammar, and its right-hand side is substituted in
the one place where it occurs:

S → CAC

A → bc

C → aAd

2

After the grammar is formed, it is encoded using a so called implicit encoding technique.
In this technique, the root production rule is encoded. When a variable is encountered in
the root production rule, it is treated in three different ways depending on how many times
it has been seen. The first time it occurs, its contents are sent. On its second occurrence,
a pointer that identifies the contents of the rule is sent. The pointers are similar to that
used in LZ77 (see Section 3.4.1) and consist of an offset from the beginning of the root
production rule, and the length of the match. The decoder numbers production rules in
the order in which they are received, and the encoder keeps track of this numbering. On
the third and subsequent occurrences of the variable, the number of the production rule is
used to identify it.

Example 3.13. The grammar from Example 3.12 is implicitly encoded as abcd(1, 2)(0, 3).
Because both production rules A and C only occur twice in the grammar, no variables
appear in the encoding. The encoded sequence represents the root production rule which
consists of two instances of production rule C and one instance of A. The first symbol
a is encoded normally. The first time production rules C and A are encountered, their
contents are sent. After C has been encoded, the production rule A occurs for the second
time, and the pointer (1, 2) is sent. The first element of the pointer is the distance from
the start of the sequence to the start of the first occurence of bc. The second element of
the pointer is the length of the repetition. After receiving the pointer, the decoder forms
a production rule A→ bc, and replaces both instances of bc in the sequence with A. The
second occurrence of production rule C is encoded by the pointer (0, 3). The repetition
starts at the beginning of the sequence, and continues for 3 symbols (aAd). 2

In [15], Kieffer and Yang showed that the code generated by the Sequitur algorithm
is not universal, as opposed to the grammar-based codes. The main reason is that the
grammars generated by Sequitur do not satisfy the property (b.3) (see page 35), i.e. they
are not irreducible.



Chapter 4

Existing XML-conscious compressors

We are aware of several XML-conscious compressors. In this chapter, we discuss the main
principles in these tools, and summarize their performance in the context of other XML-
conscious compressors as well as the general-purpose compressors. Because not all of the
compressors have technical papers or documentation, we were not able to present the exact
details on the compression techniques used in some occasions.

4.1 XMill

XMill [20] is an XML compressor based on Gzip, which can compress about twice as
good, and at about the same speed. It allows to combine existing compressors in order to
compress heterogeneous XML data. Further, it is extensible with user-defined compressors
for complex data types, such as DNA sequences, etc.

<book>
<title lang="en">Views</title>
<author>Miller</author>
<author>Tai</author>

</book>

Figure 4.1: Sample XML document

XMill parses XML data with a SAX parser, and transforms it by splitting the data into
three types of containers: one container for the element and attribute symbols, one for the
document tree structure, and several containers for storing the character data. By default,
each element or attribute is assigned one data container. XMill employs a path processor
that is driven by so called container expressions. The container expressions are based on
the XPath language [32], and allow experienced users to group the data within a certain
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set of elements into one container to improve compression efficiency. In the output file, the
individual containers are compressed using Gzip.

XMill applies three principles to compress XML data:

Separate structure from data. The structure, represented by XML tags and attributes,
and the data are compressed separately.

XMill uses numeric tokens to represent the XML structure. Start-tags are dictionary
encoded, i.e. assigned an integer value, while all end-tags are replaced by the token /. Data
values are replaced with their container number. When complete document is processed,
the token table, the structure container and the data containers are compressed using Gzip.
The tokens are represented as integers with 1, 2, or 4 bytes; tags and attributes are positive
integers, / is 0, and container numbers are negative integers.

To illustrate the tokenization of the structure, consider the sample XML document in
Figure 4.1. After the document is processed, the structure will be tokenized as:

T1 T2 T3 C3 / C4 / T4 C5 / T4 C5 / /

and the following dictionary is created: book = T1, title = T2, @lang = T3, author =
T4. Data values are assigned containers C3, C4, and C5 depending on their parent tag.

Group data items with related meaning. The data items are grouped into containers,
which are compressed separately. XMill groups the data items based on the element type,
but this can be overridden through the container expressions. By grouping similar data
items, the compression can improve substantially.

The container expression describe the mappings from paths to containers. Consider
the following regular expressions derived from XPath:

e ::= label | * | # | e1/e2 | e1//e2 | (e1|e2) | (e)+

Except for (e)+ and #, all are XPath constructs: label is either tag or an @attribute,
* denotes any tag or attribute, e1/e2 is concatenation, e1//e2 is concatenation with any
path in between, and (e1|e2) is alternation. To these constructs, (e)+ has been added,
which is the strict Kleene-Closure. The construct # stands for any tag or attribute (much
like *), but each match of # will determine a new container.

The container expression has the form c ::= /e | //e, where /e matches e starting
from the root of the XML tree while //e matches e at arbitrary depth of the tree. //* is
abbreviated by //.

Example 4.1. //Name creates one container for all data values whose paths end in Name.
//Person/Title creates a container for all Person’s titles. //# creates a family of contain-
ers—one for each ending tag or attribute—and characterizes the default behavior of XMill.
2

Apply semantic compressors to containers. Because the data items can be of differ-
ent types (text, numbers, dates, etc.), XMill allows the users to apply different specialized
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semantic compressors to different containers. At first, the items in the container are pro-
cessed by the semantic compressor, and then they are passed to Gzip.

There are 8 different semantic compressors in XMill. These can be used to encode inte-
gers, enumerations and texts, or the sequences or the repetitions of them more efficiently.
For example, positive integers are binary encoded as follows: numbers less than 128 use
one byte; those less than 16384 use two bytes, otherwise they use four bytes. The most
significant one or two bits describe the length of the sequence.

Semantic compressors are specified on the command line using the syntax c=>s where
c is a container expression and s is a semantic compressor.

It is possible to write his own semantic compressor (for example, for encoding the DNA
sequences) and link it into XMill. The list of semantic compressors can be extended by
the users.

Under the default setting, XMill compresses 40%-60% better than Gzip. With the user
assistance (grouping related data, applying semantic compressors), it is possible to further
improve the compression by about 10%.

The main disadvantage of XMill is that it scatters parts of the documents, making
incremental processing impossible.

4.2 XMLZip

Java-based XMLZip is a creation of XML Solutions [34]. It operates in a rather interesting
way. The compression is driven by the level parameter l. Based on this parameter, XMLZip
processes the document using the DOM interface, and breaks the structural tree into
multiple components: a root component containing the elements up to the level l, and
one component for each of the remaining subtrees starting at level l. The root component
is modified by adding references to the subtrees, and the individual components are then
compressed using the Java Zip/Deflate library (which uses a variant of the LZSS method).

<root>
<child id="1">
...

</child>
<child id="2">
...

</child>
</root>

Figure 4.2: Sample XML document

Consider the XML document in Figure 4.2. Suppose that l = 2. XMLZip splits
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the original document into three components, as displayed in Figure 4.3. In the root
component, <xmlzip> tags are inserted to reference the detached subtrees. After that, the
individual components are compressed.

<root> <child id="1"> <child id="2">
<xmlzip id="1"/> ... ...
<xmlzip id="2"/> </child> </child>

</root>

Figure 4.3: Decomposition of the XML document with l = 2

The compression efficiency depends on the value of l. In most occasions, increasing l
causes the performance to deteriorate, since the redundancies across the separated subtrees
cannot be used in the compression.

In a comparison to other XML compressors, XMLZip yields considerably worse results.
It is often outperformed even by the ordinary text compressors, such as Gzip. However, the
main benefit of XMLZip is that it allows limited random access to the compressed XML
documents without storing the whole document uncompressed or in the memory. Only
the portion of the XML tree that needs to be accessed is uncompressed. It is possible to
implement a DOM-like API to control the amount of memory required, or to speed up the
access for queries, for example.

XMLZip can only be run on entire XML documents, and therefore the compression is
off-line.

4.3 XMLPPM

In [4], the PPM compression has been adapted to compress XML. The compressor—called
XMLPPM—uses so called multiplexed hierarchical modeling (MHM) for modeling the struc-
ture of XML. In MHM, several PPM models are multiplexed together, and switches among
them are performed based on the syntactic context supplied by the parser.

XMLPPM uses four PPM models: one for element and attribute names, one for element
structure, one for attributes, and one for character data. Each model maintains its own
state but all share the access to one underlying arithmetic coder. Element start tags, end
tags, and attribute names are dictionary encoded using numeric tokens. Whenever a new
symbol is encountered, the encoder sends the symbol name and the decoder enters it to
the corresponding dictionary. Some tokens are reserved, and are used to encode the events
such as the start of the character data, the element end tag, etc.

To demonstrate the operation of XMLPPM, we encode the following XML fragment:

<elt att="abcd">XYZ</elt>
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Suppose that the tag elt has been seen before, and is represented by the token 10,
but the attribute att has not, and the next available token for attribute names is 0D. The
state of the individual MHM models after processing the XML fragment is shown in Table
4.3.

<elt att= "abcd" > XYZ </elt>

Elt: 10 FE FF

Att: 100D asdf00 10FF

Char: 10XYZ00

Sym: att00

Table 4.4: MHM models after processing the example XML fragment

Notice the token 10 that has been “injected” into the attribute and character data
models. This token is not encoded; instead, it is used to indicate the cross-class sequential
dependencies within the XML document. A common case for these dependencies is a
strong correlation between the enclosing element tag and the enclosed data. Using the
“injection” mechanism, these correlation can be exploited by MHM.

The authors of XMLPPM have also implemented a variant of MHM that uses PPM*
instead of PPM, which they call MHM*. Compared to MHM, MHM* performs slightly
better on average, but is considerably slower. On structured documents, MHM performs
much worse (about 20%-40%) than MHM*; on the other hand, MHM* is worse on textual
documents.

XMLPPM (using either MHM or MHM*) compresses extremely well, outperforming
most of the concurrent compressors. The compression is on-line, and therefore the XML
data can be processed incrementally.

4.4 Millau

Millau [10] is an on-line XML compression method that is suitable for compression and
streaming of small XML documents (smaller than 5 kilobytes). Millau can make use of the
associated schema (if available) in the compression of the structure.

The encoding is based on the Wireless Binary XML format (WBXML) proposed by
the Wireless Application Protocol Forum [31] which losslessly reduces the size of XML
documents. This method uses a table of tokens to encode the XML tags and the attribute
names. Some tokens are reserved, and are used to indicate events such as the character
data, the end of element, etc. The meaning of a particular token is dependent on the context
in which it is used. There are two basic types of tokens: global tokens and application
tokens. Global tokens are assigned to fixed set of codes in all contexts and are unambiguous
in all situations. Global codes are used to encode inline data (such as strings, entities,
etc.) and to encode a variety of miscellaneous control functions. Application tokens have
a context-dependent meaning and are split into two overlapping code spaces : the tag code
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space and the attribute code space. The tag code space represents specific tag names and
the attribute code space comprises of attribute-start token and attribute-value token.

Since the set of tags and attributes is known in advance in the WAP protocol, the table
is fixed and does not have to be contained in the encoded data. The output data is a
stream of tokens and uncompressed character data. In this stream, the structure of the
original XML document is preserved.

Millau improves on the WBXML scheme, making it possible to compress the charac-
ter data: the structure and the character data are separated into two streams, and the
character data stream is compressed using conventional text compressors. In the structure
stream, special tokens are inserted to indicate the occurrences of compresssed data.

Since the set of elements and attributes is not known in advance in the case of ordinary
XML documents, Millau sets out a strategy for building the token table. If the DTD exists,
Millau constructs the table based upon it; otherwise, the document is pre-parsed and the
tokens are assigned to the encountered elements and attributes. The table of tokens is
contained in the encoded data.

An XML parser for processing the Millau streams is implemented using both DOM and
SAX. Because binary tokens are processed—instead of strings in the case of uncompressed
XML documents—, the parser usually operates very fast.

Although Millau is outperformed by the traditional text compression algorithms on
large XML files, it achieves better compression for file sizes between 0-5 kilobytes, which
is the typical file size for eBusiness transactions, such as orders, bill payments, etc.

4.5 Other compressors

We are aware of two more XML compressors: XGrind and XML-Xpress. XGrind is a
compressor that makes direct queries of the compressed data possible. XML-Xpress is a
commercial application that is schema-aware and is reported to achieve extremely high
compression ratios. In subsequent paragraphs, the principles of the two compressors are
briefly discussed.

XGrind [28] is a query-friendly XML compressor that encodes the data as a mixture
of numeric tokens that represent the structure (the mechanism of tokens is similar to that
of the XMill compressor) and of compressed character data. The structure of the original
document is preserved in the output. To make querying of the compressed data possible,
the character data is encoded using non-adaptive Huffman coding. Thanks to that, it
is possible to locate occurrences of a given string in the compressed document, without
decompressing it. The non-adaptive coding requires two passes over the input data: in the
first pass, the statistics are gathered, and in the second pass, the document is compressed.

Commercially available XML-Xpress [14] is a schema-aware compressor that can work
either with the DTD or XML Schema [33]. When the schema is known to XML-Xpress,
XML tags can be encoded very efficiently. For example, if an element is defined in the
schema as having only one of two sub-elements (A|B), only a binary decision needs to be
included in the encoded file to determine which of A or B is present. The compression can
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be further improved by using XML Schema instead of DTD, because the information about
the data types of the element data is utilized in the compression. In [14], compression ratios
exceeding 30 : 1 are reported.

The main disadvantage of XML-Express is that it is primarily a schema-specific com-
pressor, and thus the above average compression ratios are dependent on the presence of
a known schema. In the absence of such a schema, XML-Express uses a general-purpose
compressors, and the outstanding compression performance is lost.



Chapter 5

Principles of the proposed XML
compression scheme

In Chapter 4, a number of XML-conscious compressors were discussed. Several compression
techniques have been adopted in these tools, and with varying results. Unfortunately, it
is not easy to judge which compressor is the best, or which is the worst. Such a ranking
would be necessarily unfair, since each of the compressors that we are aware of differs
from the others in some way, and is suited for different purposes. For example, some of
the compressors allow transparent access to the compressed data via the SAX or DOM
interfaces (XMLZip or Millau, for instance), but achieve poor compression results. On the
other hand, there are XMill and XMLPPM that compress very well, but there is no way
to parse the compressed data unless it is decompressed first. Also, some compressors work
incrementally and allow on-line processing of the data (XMLPPM), while some are off-line
by their design (XMill). There is no clear winner—no “ideal” XML compressor—, and
one has to formulate his requirements first before he picks and applies the compressor that
seems to be the most suitable.

We believe that there are still many paths to be explored in the field of XML data
compression. In this work, we present a syntactical compression scheme that is based on
probabilistic modeling of XML structure. It does not need the DTD since it infers all the
necessary information directly from the input XML data. Moreover, it works incremen-
tally, making on-line compression and decompression possible. Transparent parsing of the
compressed data using the SAX interface is possible.

In the following text, the main principles and features of our compression scheme are
discussed.

Syntactical compression. Our approach is based on the observation that XML has a
fairly restrictive context-free nature. Indeed, the structure of XML documents, as defined
in the DTD, can be described by a special form of a context-free grammar. These grammars
have been extensively studied (for example in [9]) and are sometimes referred to as XML
grammars. Consider for example the (rather simplistic) DTD:
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<!DOCTYPE a [
<!ELEMENT a ((a|b), (a|b))>
<!ELEMENT b (b)*>

]>

According to [9], this DTD can be rewritten to the corresponding XML grammar:

Xa → a(Xa|Xb)(Xa|Xb)a

Xb → b(Xb)
∗b

It can be seen that XML grammars correspond to DTDs in a natural way, and vice
versa. This led us to the thought of employing some kind of grammar-inferring technique
to compress the XML data.

The syntactical compression techniques that caught our attention were the Sequitur
algorithm by Nevill-Manning and Witten (see Section 3.6.2 or [24, 25]), and grammar-
based codes recently proposed by Kieffer and Yang (see Section 3.6.1 or [16, 15]). Both
schemes work in a similar manner: they parse the input data and infer a context-free
grammar that uniquely describes it. To compress the data, the grammar is encoded using
an arithmetic code.

We have experimented with the implementation of Sequitur that was designed to be
used on text data, and we find its results on XML to be very promising. In many occasions,
it greatly outperformed other general-purpose text compressors such as Gzip, demonstrat-
ing its ability to identify the hierarchical structure of the input.

The main difference between Sequitur and the grammar-based codes is in the way how
the grammar is constructed and encoded. In both schemes, the grammar is constructed
incrementally during the processing of the data. However, the grammar-based coding
scheme allows us to parse the data and to encode the grammar simultaneously, whereas in
Sequitur, complete grammar has to be formed first before it is encoded.

The constraints on the generated grammar are more restrictive in the case of the
grammar-based codes. The properties of the generated grammar are influential in the
performance of both schemes: while the grammar-based codes are proven to be universal
for wide variety of sources, the Sequitur code is not guaranteed to be universal code at all.
For further details, please refer to [15].

We decided to employ the grammar-based coding in our scheme, although we were
not aware of any previous implementation of it. This step into the terra incognita was
motivated by the results observed with the Sequitur algorithm, and by our belief in the
potentials of the grammar-based codes. Moreover, it was also an interesting test on how
well this new and promising technique performed.

Remark. The efficient implementation (in the sense of time and memory sparing issues)
of the grammar-based coding scheme is a complicated task in itself, and requires many
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practical problems to be solved. Our goal was rather to test the behavior of the grammar-
based compression on semi-structured data than to present a “perfect” implementation.

Analysis of SAX events. Exalt uses an underlying SAX parser to access the XML
content.1 The event-driven nature of the SAX interface has several advantages over the
standard DOM interface: most importantly, it is not necessary to store the whole document
in the system memory. This is crucial for the compression of large documents. Also, thanks
to the the sequential nature of the SAX interface, the data can processed incrementally,
which makes on-line compression possible.

A typical SAX parser “emits” a stream of SAX events that are processed by the appli-
cation. In our compression scheme, the SAX events serve as the basis for the modeling of
XML structure (see below).

One possible problem with the SAX interface is that, in some occasions, the data
presented by SAX parser may not be the same as the original data. For example, consider
the following fragment of character data: “rhythm &amp; blues”. The data that the SAX
parser delivers to the application is: “rhythm & blues”. Notice that the standard entity
reference &amp; has been replaced by the character &. While this is no real problem for the
ordinary XML processing (in fact, it is an expected behavior to replace the reserved entity
references with their equivalents), it has important consequences for the XML compression.
If we store the character & “as is”, the resulting XML document may not be well-formed.
The partial solution is to replace each occurrence of this character by the corresponding
entity reference every time it would cause the resulting XML document not to be well-
formed. The consequences of this are not far to seek: if we compress an XML document
using the SAX event processing, after the decompression we may get a document that
is not identical to the original, since some characters in the original document may be
incorrectly replaced by the reserved entities that represent them.

Accessing the XML document via the SAX interface requires more operations to be per-
formed than reading the document directly. It is therefore obvious that general-purpose
text compressors run faster. However, this handicap shows to be negligible in most occa-
sions.

Probabilistic modeling of XML structure. XML data contain a lot of redundant
information that is present in the XML structure. For the ordinary text compressors, this
type of redundancy is often difficult to discover, which is the main reason why they yield
only suboptimal results. By discovering and utilizing the structural redundancy, one can
substantially improve the compression efficiency.

Several techniques of structure modeling have been adopted in the XML-conscious
compressors. For example, XMill and XMLPPM, which are both based on existing text
compressors, use numeric tokens to represent the XML structure. The tokenized represen-
tation of the structure exposes the redundancy much more, and is therefore better suited
for compression using general-purpose text compressors.

1We use the Expat XML parser [8].
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We have proposed two modeling strategies which we call the simple modeling and the
adaptive modeling, respectively. In both cases, numeric tokens are used to represent the
structure. The input XML data is transformed into a sequence of characters and numeric
tokens, and then passed to the grammar-based coder. The numeric codes represent the
units of the XML structure that contain a lot of redundant information, such as repeated
occurrences of known tags and attributes, or the end-of-element tags. Furthermore, some
tokens are reserved to encode the events such as comments, processing instructions, entity
declarations, etc.

The simple modeling does not bring anything really novel to the XML data compression.
However, due to its simplicity, it can be used as a suitable foundation for future enhance-
ments. One of the ways how to improve on it is demonstrated in the adaptive modeling.
In the adaptive modeling, we try to learn as much as possible about the structure of the
input document. This knowledge can be used for the prediction of the subsequent data.
In most occasions, the elements have fairly regular structure—and once we discover this
structure, we are able to predict the “behavior” of the document in the future. As a result,
the amount of the data to be compressed can be substantially reduced.

The adaptive modeling gives us resources that allow us to measure the complexity
of the XML documents. We define so called structural entropy which characterizes the
amount of the information present in the structure of the element. By weighting the
structural entropies of the individual elements of the document, the complexity of the
entire document can be measured.

The detailed description of both the simple modeling and the adaptive modeling can
be found in Chapter 6.

Remark. We wanted our compression scheme to be on-line, making incremental process-
ing of the data possible. The document transformation that we use is similar to that of the
XMill compressor, except that it is not container-based. The character data and the tok-
enized structure are compressed together. We realize that this approach somewhat “mixes
apples and oranges”, and probably hinders better results. In XMLPPM, for example, the
data is compressed using four multiplexed PPM models, each devoted to different class of
data (element and attribute names, attribute values, character data, and structure). Mul-
tiplexing of several models is probably the right way, and we wanted to go that direction
initially. Sadly, it soon became obvious that this approach is not applicable in our com-
pression scheme. While switching among the PPM models is quite easy, the nature of the
greedy irreducible grammar transform makes it impossible for the grammar-based coding.
If we used several grammars for representing different classes of data, it would be extremely
difficult to keep them in a consistent state. The main reason is that the greedy irreducible
grammar transform doesn’t ensure that the data passed to it is processed. Actually, the
input data is enqueued and only a small portion of it (if any) may be processed. Very
often, there are production rules in the grammar that represent more than the enqueued
data, and the greedy irreducible grammar transform waits until next data is supplied to
see if these rules are applicable.
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The independence on the DTD. We designed our compression scheme to be indepen-
dent on the DTD. The reason is that while the information contained in the DTD can be
used for extremely efficient compression of XML (as sketched in [19]), the use of the DTD
brings many problems that need to be solved.

Probably the most important problem is that the DTD may not be always available.
Often, it is located on a remote machine (which may be unaccessible), or the document
simply does not have any DTD at all.

Other problem is how to ensure that the DTD is available also to the decoder. If we
use some local DTD for the compression, and then copy the compressed file to another
machine, we will be unable to decompress it there, because the DTD will be unaccessible
to the decoder. To solve this, the DTD (probably compressed in some way) should be
attached to the compressed data.

Because of the above mentioned problems, and the fact that there are many documents
that do not have any associated schema, we decided not to rely on the DTD. However, the
support for the schema in our compressor surely is a motivating subject for future research.

SAX event based decompression. Our decompressor can act as an ordinary SAX
parser on the compressed data. It can read the compressed XML data and emit SAX
events to the application. Actually, the decompressor can be divided into two components:
one components decodes the stream of the compressed data and emits corresponding SAX
events, and the second component uses these events for the reconstruction of the original
XML document. Thanks to this approach, the SAX events can be redirected to the ap-
plication in an natural fashion. The application can handle only selected SAX events (for
example, the start-of-element and end-of-element events), and ignore the others.

The SAX interface of Exalt is similar to that of the Expat XML parser [8].

Support for various types of inputs and outputs. In most occasions, the data that
is processed is stored in files. But we are not limited to use files only. In fact, it is possible
to work with virtually any “device”, such as the network or some database, for example.
In our compression scheme, a higher level abstraction to inputs and outputs is introduced,
called input/output devices (or IO devices, for short). At present, only files are supported,
but programmers are allowed to create custom IO devices which can be transparently used
by both the compressor and the compressor.

During the compression, the XML data is usually read from some input device and then
written to some output device. We refer to this default interface as the PULL interface. In
the PULL interface, the coder works with the input device by itself; once the compression
starts, there is no way to stop it unless complete document is processed. In some occasions,
a different interface may be useful. We call this the PUSH interface. In the PUSH interface,
it is the application that supplies the data to the coder. The PUSH interface may be used
for the compression of the XML data that is dynamically generated, for example.
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Modeling of XML structure

The modeling of XML structure plays an important role in the process of compression.
Since there is a lot of redundant information arising from the structure of XML, the
goal of such a modeling is to expose this redundancy and to improve the performance
of the underlying compressor. We can also make use of the model of the structure to
make predictions that may substantially reduce the amount of the data that has to be
compressed. Thanks to that, the compresion performance may further increase.

We have devised and implemented two modeling strategies called the simple modeling
and the adaptive modeling, respectively. While the first technique is quite simple and
serves rather as a foundation for further enhancements, the latter improves on it and is
much more sophisticated.

Both modeling strategies are adaptive and make on-line processing possible.

6.1 Structural symbols

In both modeling strategies, the structure and character data content are compressed
together (there are no containers as in the case of XMill). The structure is represented—and
distinguished from the character data—by numeric tokens. We call these tokens structural
symbols. There are two types of structural symbols: reserved symbols and identifiers. The
reserved symbols represent events such as new start-element tag or attribute, known start-
element tag or attribute, end-element tag, start of CDATA section, etc. The identifiers
are used in conjunction with the reserved symbols and complete the information in some
situations. Very often, the identifiers act as indices to certain dictionaries.

The set of the reserved symbols is fixed, while the identifiers are assigned values in an
adaptive way, during the processing of the input document. Therefore, reserved symbols
and identifiers have to be encoded differently.

In the case of the reserved symbols, we made use of the fact that in the XML spec-
ification [30], the valid character data is defined such that there is a gap of characters
with Unicode values #00 to #1F (except the whitespace characters represented by codes
#09, #0A, and #0D). We used some of these values to represent the reserved symbols. The



6.2 Simple modeling 59

assignment of the values, as well as the meaning of the reserved symbols, is different in the
simple and the adaptive modeling strategies. The exact details can be found in Sections
6.2 and 6.3, respectively.

To encode the identifiers, a mechanism that allows to represent any value is required.
In our scheme, we decided to use order-2 Fibonacci codes (see Section 3.2.1) for encoding
the identifiers.

6.2 Simple modeling

The policy of the simple modeling strategy is onefold and resembles the transformation
that has been used in XMill. The input XML data is transformed into a sequence of
characters and structural symbols (reserved symbols and identifiers), and then passed
to the grammar-based coder. As opposed to XMill, there are no data containers. The
identifiers are assigned in an adaptive way, therefore the dictionary of them does not have
to be transmitted with the compressed message.

In the simple modeling, the start-element tags and attribute names are dictionary
encoded using unique identifiers. The attribute names are stored in the same dictionary
as the names of the start-element tags.

Symbol Description Parameter
0 End of data -
1 New tag

New attribute
String
String

2 Known tag
Known attribute

Index to the dictionary of elements
Index to the dictionary of elements

3 End tag -
4 Comment String
5 Processing instruction Sequence of strings
6 DTD Strings and reserved symbols
7 XML declaration Sequence of strings
8 CDATA section String
11 Start of attributes Reserved symbols
14 Entity declaration Sequence of strings
15 Notation declaration Sequence of strings
16 Default data String

Table 6.1: Reserved symbols in the simple modeling

To encode the structure of the document, a set of reserved structural symbols is used.
The complete list of reserved symbols is summarized in Table 6.1. Along with the numeric
value of each symbol, also its purpose and type of prospective parameters are described.
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The most significant symbols are those that are used for reporting new and known
start-element tags (or attributes). If a new start-element tag (attribute) is encountered
during the processing of the input document, the NEW TAG symbol is produced, followed
by the name of the element (attribute). The name is inserted into the dictionary and
assigned a unique identifier. Any subsequent occurrence of the tag (attribute) is encoded
using the KNOWN TAG symbol, followed by its identifier. The identifiers are encoded using
order-2 Fibonacci codes.

If attributes and start-element tags are encoded the same way, one possible problem is
how to distinguish between them. In the simple modeling, we use a special ATTRIBUTE
SECTION symbol that informs the decoder that a list of attributes and their values follows.
The list is terminated with the END OF DATA symbol right after the value of the last
attribute. To make the operation of the decoder simpler, the list of attributes of an element
always precedes the element identification in the data stream. After buffering the names
and the values of the attributes, the decoder simply recovers the name of the element from
the subsequent data, and attaches the attributes to it.

The end of element is reported by special END TAG symbol. This symbol does not
require any additional parameters. Since the elements are properly nested in well-formed
XML documents, it is always clear which element is ending.

<lib>
<book>
<author>...</author>
<title>...</title>

</book>
<book lang="...">
<author>...</author>
<author>...</author>
<title>...</title>

</book>
</lib>

Figure 6.1: Sample XML document

To illustrate the transformation of the XML document, consider the XML document in
Figure 6.1. By using the simple modeling strategy, the document gets transformed into:1

N lib N book N author ... / N title ... / / A N lang ... E K I2 K I3 ... / K I3 ... / K I4 ... / / /

Following notation is used. The characters N and K represent the reserved symbols
NEW TAG and KNOWN TAG, respectively. The character A stands for the ATTRIBUTE

1Newline characters and whitespace after or before the start-element tags are omitted in this example.
In the real implementation, these characters are compressed, too.
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SECTION symbol, and the character E for the END OF DATA symbol. The END TAG
symbol is represented by the character /. Finally, the we use I2, I3, and I4 to represent
the identifiers assigned to the tags book, author, and title, respectively.

Remark. If we compared the representation of the structure obtained by the simple
transformation to that obtained by XMill, we would see that it would be shorter in the
case of XMill, because XMill does not need any tokens for reporting new and known
tags. It encodes the tags using only their identifiers. This is possible because of two
reasons. First, the character data and the structure are compressed separately (in different
containers) in XMill, and therefore there is no need to distinguish between the character
data and structure by special-purpose tokens. Second, XMill assigns the identifiers in a
semi-adaptive fashion. The dictionary of the tags is a part of the compressed message, and
the decoder does not have to learn the assignment of the identifiers.

6.3 Adaptive modeling

In adaptive modeling, we try to learn as much as possible about the structure of the input
XML document during its processing. This knowledge can be used for the prediction of the
subsequent data. In most occasions, the elements have fairly regular structure. Recalling
the XML document in Figure 6.1, we can see that the element book contains one or two
subelements author and one subelement title (in that order). Once we discover this
structure, we are able to predict the “behavior” of the element book in the future. As a
result, the amount of the data to be compressed can be substantially reduced.

Similarly to the simple modeling, structural symbols (i.e. reserved symbols and identi-
fiers) are used to encode the XML structure. However, the meaning of the reserved symbols
is context-dependent in the adaptive modeling. Thanks to that, many symbols can be as-
signed the same value. Therefore, the range of the reserved numeric values is smaller, and
the probability of better compression higher, because of the increased homogenity of the
transformed data.

The reserved symbols for the adaptive modeling are listed in Table 6.3.
We observed that the names of the attributes collided with the names of the elements

only very rarely. Therefore, we decided to use two distinct dictionaries to represent the
start-element tags and attribute names in the adaptive modeling—as opposed to one dic-
tionary in the simple modeling. Since both of the dictionaries are usually shorter than one
common dictionary, the range of the identifiers can be reduced.

In the simple modeling, the structural symbols are passed to the compressor whenever
any structural information is supplied by the XML parser (end of an element, start of
an element, character data, etc.). The adaptive modeling is more economic: it generates
the structural symbols only if they are necessary. If the structure has been predicted,
no symbols need to be generated. Suppose, for example, that we are processing element
author from Figure 6.1. Suppose that this element has been seen in the past so that
the adaptive modeling is aware of its structure. After the character data in the element
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Symbol Description Parameter
0 End of data

Nack
Transition

-
Distance from clue transition
Identifier of the transition

1 New tag
New attribute
Comment

String
String
String

2 Know tag
Known attribute
Processing instruction
XML declaration

Index to dictionary of elements
Index to dictionaty of attributes
Sequence of strings
Sequence of strings

3 End tag
CDATA section
DTD

-
String
Strings and reserved symbols

4 Characters Strings and reserved symbols
5 Default data String
6 Entity declaration Sequence of strings
7 Notation declaration Sequence of strings

Table 6.3: Reserved symbols in the adaptive modeling

author, the element ends. To report this, the END TAG symbol is generated in the simple
modeling. In the adaptive modeling, no symbol needs to be generated, because author
was expected to end at this point.

There are, however, many situations when the predictions may fail in the adaptive
modeling. For example, if some element has very irregular structure, it is often very
difficult to predict it. To handle these situations, a rather elaborate escape mechanism is
required. This escape mechanism should make it possible both to inform the decoder that
the prediction failed (and where it failed), and to instruct the decoder what actions should
be performed.

In the following sections, the principles of the adaptive modeling are described in detail.

6.3.1 Model of element

In the adaptive modeling, each element e is assigned a finite state automaton Me which
describes its structure. We call the automaton a model of element e.

The states of the automaton can be of four types: besides the initial state and the
accepting states, there are also so called character states and element states. In an analogy
to the SAX parsing interface, the initial state can be seen as a parallel to the “start element”
event, and the accepting states as a parallel to the “end element” event. The character
states indicate the presence of the character data in the element, and the element states
represent the nested elements. Each element state carries the name of the nested element
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and acts as a reference to the model describing that element.
The transitions in the automaton characterize the arrangement of the nested elements

and character data within the element. Each transition t is assigned a frequency count ft
that indicates how many times t has been used. From these counts, the probabilities of
the transitions are calculated. For each state s, define T (s) to be the set of the transitions
that lead out of s. Then the probability of the transition t ∈ T (s) is defined as

pt =
f(t)∑

t′∈T (s)
f(t′)

For each state s, the most probable transition that leads out of s shall be called deter-
ministic; the remaining transitions shall be called nondeterministic. We shall say that the
state s predicts the state s′, if the deterministic transition leading out of s ends in s′.

Besides the frequency counts, the transitions are also assigned a numeric identifier which
uniquely identifies them with respect to their start state. More formally, for each state s,
the set T (s) is finite and equal to {t1, . . . , tsn}. For each transition ti ∈ T (s) (1 ≤ i ≤ tsn),
its identifier is defined as id(ti) = i.

Each model represents exactly one element, but the models are “linked” together by
means of the states that represent the nested elements.

The element models are built incrementally during the compression (or decompression)
and reflect the present structure of the individual elements. The initial automaton for each
element consists of one (initial) state with no transitions defined. During the processing
of the data, new states and transitions are being added to the automaton, and frequency
counts are adjusted.

Because of the way how the models are being built (see Section 6.3.2.1), they are always
acyclic, i.e. they do not contain a sequence of transitions that forms a cycle. In fact, the
models have a structure of a tree, with leaves representing the accepting states.
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Figure 6.2: Model of element book

Example 6.1. To illustrate how the element models look like, we recall the XML document
in Figure 6.1 (page 60). The document contains four types of elements (lib, book, author,
and title), therefore four element models will be created during its processing. In Figure
6.2, the final model of the element book is displayed. In the model, the initial state is
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depicted as book , the accepting states as ........
.........
................

............................................................................................
.........
......../ , and the character states as ........

.........
................

............................................................................................
.........
........C .2 The

element states are represented simply by the names of the elements. The nondeterministic
transitions are dotted in the figure.

The element book appeared two times in the document. In its first occurrence, it
contained one author subelement, and one title subelement (in that order). In its second
occurrence, it contained two author subelements, followed by one title subelement. If
we look at the model of book, we will see that the model permits both possibilities. In
the second character state, transitions leading both to the author and the title element
states are defined. 2

Remark. There is an obvious similarity between the element models and the element dec-
larations in the DTD. Indeed, the information that we try to describe by the construction
of the models is already present in the DTD. So why not to use the element declarations
and construct the models based upon them? There are several possible answers to this.
First, we designed our compression scheme to be independent on the DTD, therefore we
cannot use it on principle. Second, the DTD often describes a whole class of documents,
and this class may be unnecessarily broad. For our purposes, we want to create a model
of just one distinct document. We believe that such a model is more suited for the com-
pression, because it is more specific and describes the data more accurately. Third, the
whitespace characters are ignored in the DTD. Our models have to work with this data to
keep the original indentation of the source.

6.3.2 Modeling algorithms

During the compression and the decompression, we make use of the element models to make
predictions of the structure of the elements. For each processed element, the prediction is
achieved by the movement along the deterministic transitions in the corresponding model.
Suppose that in the current state of the model, a certain element is expected to occur. In
other words, the current deterministic transition ends in an element state that represents
the expected element. If the expected element really occurs, the only thing we have to do
is to move along the deterministic transition, and to enter the referenced model. The point
is that no information needs to be sent to the decompressor.

However, the situation is not always that simple. The most important problem is that
we do not have any element models in the beginning. The models are being created during
the processing of the data. Each time a new element is encountered, a simple initial model
is assigned to it. This model gives no predictions at all; it consists of only one state and no
transitions. During the processing of the element, new states and transitions are added to

2The element book does not contain any character data in the common sense, only newline and whites-
pace characters before or after the nested elements. From our point of view, however, these characters
are considerd to be character data, too. If we ignored them, the compressed data would not represent the
original document, since all the indentation would be lost.



6.3 Adaptive modeling 65

the model to reflect the structure of the element. When the element is encountered again
in the document, its structure is compared to that predicted by its model. If the model
does not describe the present structure accurately, it is updated in an appropriate way.
In other words, the models are adaptive, and are constantly being refined to reflect the
structure of the corresponding elements. Therefore, the predictions and the updating of
the models have to be performed simultaneously.

Another problem is that the models may not always give good predictions. In case that
the element has an irregular and varying structure, which is difficult to predict, the model
may be mistaken. It may easily happen that the character data is predicted by the model,
for example, but a nested element actually occurred. Therefore, an escape mechanism is
required.

Because the modeling is adaptive, the decompressor must be able to maintain the same
models as the compressor. Moreover, it must be able to make the same predictions, and to
recover in case that an escape event occurs. However, to keep the decompressor synchro-
nized with the compressor is not as simple as it may seem. As noted before, the prediction
of the structure is realized by the movement along the deterministic transitions in the
element models. Thanks to these predictions, the compressor can operate without sending
any data to the decoder very often. While this may improve the compression performance
substantially, it makes the cooperation with the decompressor rather complicated. For ex-
ample, if an escape event occurs during the compression, the decompresor is often unable
to locate where (i.e. in which model, and in which state) it actually occurred.

Fortunately, it shows that during the compression, there are states in the models that
can be uniquely identified by both the compressor and the decompressor—for example,
the initial state of the root element. We refer to these states as to clue states. Thanks
to these states, the decompressor can be always synchronized with the compressor. If
the compressor emits an escape event, it also sends the distance (that is, the number of
deterministic transitions) from the clue state. The decoder then moves along the specified
number of deterministic transitions, and performs an appropriate recover action. After
that, both the compressor and the decompressor set the current state to be the next clue
state.

In the following text, we present the algorithms that characterize the basic operation
of the compressor and the decompressor, respectively.

6.3.2.1 Compression

In this section, we present an algorithm for modeling and encoding the structure of one
element, as it is implemented in the compressor. The algorithm operates recursively,
making it possible to model and encode also the nested elements in a natural fashion.
It constructs the model for the element, and transforms its structure depending on the
predictions provided by the model.

Well-formed XML documents contain one root element, and the other elements are
nested. Therefore, the structure of the whole document can be modeled and encoded by
applying the algorithm to the root element.
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The algorithm takes the name of an element as the parameter. Besides that, it uses
an external variable dist for measuring and reporting the distance from the clue states.
Initially, the compressor sets this variable to 0. If it necessary to send the value of dist to
the decompressor, it is encoded using order-2 Fibonacci code.3

The structure of the root element e and its nested elements is modeled and encoded as
follows:

1. If Me does not exist (i.e. the element e was encountered for the first time), create an
initial model for e.

2. Set s to be the initial state of Me.

3. Read the data at the current position in the element e. Depending on the type of
the data (character data, name of a nested element, or end of element), and on the
properties of s, perform one of the four possible actions:

• There is no transition leading out of s. Then create a new state s′ which has
the same type as the current data (that is, a character state for character data,
an element state for the nested element, and an accepting state for the end of
element), and a new transition s→ s′. Set dist = 0 and encode the data using
the structural symbols:

– Character data: CHARACTERS data

– A name of a new (previously unseen) element: NEW TAG name

– A name of a known (previously seen) element: KNOWN TAG identifier

– End of element: END TAG

• There are some transitions leading out of s, but none of them ends in a state with
the same type as the data. Then output the NACK reserved symbol followed by
the value of the distance counter dist. After that, create a new state s′ which
has the same type as the data, and a new transition s → s′. Set dist = 0 and
encode the data using the structural symbols.

• The deterministic transition leading out of s ends in a state s′ which has the
same type as the data. Increase the frequency count of the transition, as well
as the the distance counter dist by 1. In case of character data, encode it as
follows: CHARACTERS data

• Nondeterministic transition t leading out of s ends in a state s′ with the same
type as the data. Then output the NACK reserved symbol followed by the value
of the distance counter dist, and the TRANSITION reserved symbol followed by
id(t). Increase the frequency count of the transition t and set dist = 0. In case
of character data, encode it as follows: CHARACTERS data

3Because it is only possible to encode integers greater than 0 using Fibonacci codes, dist+ 1 is actually
encoded. After the decompressor decodes the value, 1 is subtracted.
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4. The new current state is s = s′. Depending on the type of s, perform one of the two
possible actions:

• The state s represents an element e′. Then apply the complete algorithm recur-
sively to e′.

• The state s is an accepting state. Then the algorithm ends.

5. Continue with step 3.

Remark. Besides start tags, end tags, and character data, XML documents may contain
additional XML mark-up, such as comments, processing instructions, or CDATA sections.
The above described algorithm treats this mark-up as a part of the character data. Each
time a comment, processing instruction, or a CDATA section is encountered, it is encoded
using appropriate structural symbols (COMMENT, PI, CDATA), and inserted in a character
data section. For example, consider the following XML fragment:

<e>hello <!-- world --></e>

The content of element e is encoded as one character data block:

CHARACTERS hello COMMENT world

6.3.2.2 Decompression

In the decompressor, the structure and the content of the compressed document is recon-
structed. Compared to the algorithm of the compressor, it operates in a much simpler
manner.

The algorithm can be stated in a form of a simple loop. In each step of the algorithm, a
block of the encoded data is read and analyzed. The block consists of a reserved structural
symbol, optionally followed by its parameter. Based upon the information contained in
the block, the models of the elements are constructed and updated.

The encoded data starts with the NEW TAG reserved symbol, followed by the name of
the root element. The decompressor first creates an initial model for the root element, and
enters the initial state of the model. After that, the decompressor reconstructs the content
of the root element and the nested elements according to the following steps;

1. Read a block of data. Depending on the structure of the block, perform one of the
following actions:

• NEW TAG name: Insert name into the dictionary of elements and move along the
deterministic edges (adjusting their frequency counts and possibly visiting the
nested element models) until a state s with no outgoing transitions is reached.
Create an initial model for the element. After that, create a new element state
s′ to represent the element, and a new transition s→ s′.
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• KNOWN TAG identifier: Resolve the name of the element represented by
identifier and move along the deterministic edges (adjusting their frequency
counts and possibly visiting the nested element models) until a state s with no
outgoing transitions is reached. Create a new element state s′ to represent the
element, and a new transition s→ s′.

• CHARACTERS data: Read data and move along the deterministic edges (ad-
justing their frequency counts and possibly visiting the nested element models)
until a character state or a state with no outgoing transitions is reached. Denote
this state as s. Create a new character state s′, and a new transition s→ s′.

• END TAG: Move along the deterministic edges (adjusting their frequency counts
and possibly visiting the nested element models) until a state s with no outgoing
transitions is reached. Create a new accepting state s′, and a new transition
s→ s′.

• NACK distance. Move along the specified number of deterministic edges (ad-
justing their frequency counts and possibly visiting the nested element models),
ending in a state s. Depending on the subsequent data, perform one of the four
possible actions:

– NEW TAG name: Insert name to the dictionary of elements, and create an
initial model for the element. After that, create a new element state s′ to
represent the element, and a new transition s→ s′.

– KNOWN TAG identifier: Resolve the name of the element given by
identifier and create a new element state s′ to represent the element,
and a new transition s→ s′.

– END TAG: Create a new accepting state s′, and a new transition s→ s′.

– CHARACTERS data: Read data and create a new character state s′, and a
new transition s→ s′.

– TRANSITION identifier: Move along the specified transition to a state
s′ and increase the frequency count of the transition by 1.

2. Depending on the type of s′, perform one of the two possible actions:

• The state s′ represents an element e. Then enter the initial state of Me.

• The state s′ is an accepting state of the model. If the model was nested in
another model, return to the corresponding state of the parent model. If the
model was not nested (it was a “root model”), the algorithm ends.

3. Continue with step 1.

Remark. In the above described algorithm, only the models of the elements are con-
structed. In a real implementation, however, the algorithm also emits SAX events depend-
ing on its current position within the models. For example, each time an initial state of
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some model is encountered, the “start element” SAX event is emitted. Similarly, each time
an acepting state is visited, the “end of element” SAX event is emitted. In the case of
character data, it is parsed first and possible comments, processing instructions, CDATA
sections and the remaining character data are extracted from it. After that, corresponding
SAX events are emitted.

6.3.2.3 Attributes

If we look closely at the algorithms presented in Sections 6.3.2.1 and 6.3.2.2, we will
see that they do not count with attributes. The problem with attributes is that they
are unordered, as opposed to elements which form an ordered sequence. In other words,
<e a="..." b="..."> is equivalent to <e b="..." a="...">. Because of that, it is not
possible to represent the set of the attributes in the element models.

As a solution to this, we use so called enhanced element models in the implementation.
The enhanced models are the same as the models discussed so far, except that they contain
one additional, special purpose, state. We refer to this state as to the attribute state. There
is exactly one attribute state in the model, and it follows immediately after the initial state.
The initial model for each element contains one initial state connected with one attribute
state.

The attribute state is assigned two counters to store the number of times the element
has been seen with attributes, and without them, respectively. Depending on which of
the counters is larger, the attributes are either expected to occur in the element, or not.
Initially, the elements are expected not to have any attributes.

Recall the model for element book in Figure 6.2 (page 63). A fragment of the enhanced
model for the element is shown in Figure 6.3.
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book C ...222

Figure 6.3: Enhanced model of element book

The attributes are encoded as a sequence of pairs: (attribute identification, value). If
the attribute occurs for the first time, it is encoded as follows:

NEW TAG name value

and name is inserted into the dictionary of attributes. If the attribute has been seen before,
it is encoded as follows:

KNOWN TAG identifier value
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where identifier is an index to the dictionaty of attributes. The list of attributes is
terminated by the END OF DATA reserved symbol.

In order to make it possible to work with the enhanced models, the algorithms described
in Sections 6.3.2.1 and 6.3.2.2 have to be slightly altered.

Each time an element is encountered, the compressor enters the initial state of the
corresponding model, moves to the attribute state, and increases the value of the distance
counter by 1. Based upon the values of the counters in the attribute state, and upon the
properties of the element, one of the four possible actions may performed:

• The element does not contain attributes, and this is what the counters in the attribute
state predict. Increase the appropriate counter by 1. Nothing else needs to be done.

• The element does not contain attributes, and the counters in the attribute state
predict the opposite. Then send the NACK reserved symbol, followed by the value of
the distance counter to the decompressor. Increase the appropriate counter by 1 and
set the distance counter to 0.

• The element contains attributes, and this is what the counters in the attribute state
predict. Increase the appropriate counter by 1, set the distance counter to 0, and
encode the block of attributes.

• The element contains attributes, and the counters in the attribute state predict the
opposite. Then send the NACK reserved symbol, followed by the value of the distance
counter to the decompressor. Increase the appropriate counter by 1, set the distance
counter to 0, and encode the block of attributes.

The algorithm in the decompressor is modified as follows. Each time a data block
starting with NEW TAG or KNOWN TAG is read, the subsequent movement along the
deterministic edges can stop also in an attribute state that predicts the attributes. If
this is the case, the data block represents the first of the attributes, and the remaining
attributes are read. If the decompressor reads the NACK symbol, and ends in an attribute
state after the movemenent along the specified number of transitions, the prediction of the
attribute state is interpreted inversely: that is, if the state does not predict the attributes,
they are expected in the subsequent data, and vice versa. Each time the decompressor
visits an attribute state, its counters are incremented in an appropriate way.

6.3.3 Structural entropy

In this section, we show how the element models can be used for measuring the complexity
and regularity of the XML documents.

Let Me be the model of the element e. Define C(Me) to be the set of all accepting
computations of Me. Since the automaton Me is acyclic, C(Me) is finite, and for each
computation c ∈ C(Me), there exist finitely many transitions t1, t2, . . . , tnc ∈Me such that
c = t1t2 · · · tnc . The probability of the accepting computation c is equal to
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p(c) =
nc∏
i=1

pti

where pti denotes the probability of the transition ti in the calculation (for the definition
of this probability, see Section 6.3.1).

If we know the probabilities of the accepting computations ofMe, we are able to evaluate
the structural entropy of element e, which we define as follows:

SHe = −
∑

c∈C(Me)

p(c)log2p(c)

Structural entropy characterizes the complexity the element. The more regular the
element is, the smaller its structural entropy is.
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Figure 6.4: Models with different structural entropies

Example 6.2. To illustrate the meaning of the structural entropy, consider the following
situation. Suppose we want to examine the complexity of the element a, which may be
either empty or contains one nested element (b or c). Depending on the “behavior” of the
element a, its complexity may vary. Three of the possible scenarios are shown in Figure
6.4.

In the first scenario, the probabilities that a contains elements b or c, or none of them,
are equal. This situation is the worst for the adaptive modeling, since element a is very
irregular and it is almost impossible to predict its structure based upon its model. As the
result, the escape mechanism is used very frequently, causing more data to be compressed.

In the second scenario, a contains element b in most occasions. It is also empty quite
often, while element c is rather improbable to occur. In this case, the structure of a is
much more predictable. Still, the escape mechanism has to be used frequently.

In the third—and the most ideal—scenario, a contains element b in most occasions,
and only very rarely it is empty or contains element c. In this case, the model gives the
best prediction, because it is almost sure that a contains b. The escape mechanism is used
only scarcely. 2
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Based upon the structural entropies of the individual elements, the complexity of the
entire XML document can be estimated. Suppose that there are n different elements in
the document d, and each element ei has occurred li (1 ≤ i ≤ n) times. The structural
entropy of document d is defined as

SH(d) =
∑n
i=1 li ∗ SHei∑n

i=1 li

In other words, the structural entropy of the document is equal to the weighted average
of the structural entropies of the elements.

6.3.4 Practical example

In this section, we demonstrate the adaptive modeling on a short example. Consider the
XML document in Figure 6.5.4

<x><y a="..."><z>...</z></y><y a="..."><z>...</z></y></x>

Figure 6.5: Sample XML document

By using the adaptive modeling strategy, the compressor transforms the structure of
the document as follows:

N x N y ! 1 N a ... E N z C ... / / K I2 K A1 ... E C ... /

Following notation is used. The characters N and K represent the reserved symbols
NEW TAG and KNOWN TAG, respectively. The character ! stands for the NACK symbol,
the character E for the END OF DATA symbol, and the character C for the CHARACTERS
symbol. The END TAG symbol is represented by the character /. Finally, I2 and A1
represent the identifiers assigned to the element y, and to the attribute a, respectively.

In Figure 6.6, the resulting element models are depicted. Because the models are very
simple, it is easy to see that their structural entropies are equal to 0. In other words, the
elements have a very regular structure.

To compare the performance of the adaptive modeling to that of the simple modeling,
we transformed the sample document using the simple modeling:

N x N y A N a ... E N z ... / / K I2 A K I3 ... E K I4 ... ///

Here, the character A represents the ATTRIBUTES symbol, and the identifiers I2, I3,
I4 represent the repeated occurences of the tags y, a and z, respectively.

It can be seen that the adaptive modeling yields a slightly shorter representation. It
uses 14 structural symbols and 2 identifiers, whereas in the case of the simple modeling, 16

4The whitespace characters and the indentation have been removed from the source to make it shorter.
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Figure 6.6: Models after processing the sample document

structural symbols and 3 identifiers have been used. In the adaptive modeling, one escape
event was emitted, because the element y contained attributes on its first occurrence (and
by default, the elements are supposed not to have any attributes when they occur for the
first time).

In this particular case, the difference between the simple and the adaptive modeling
is not very significant. However, it follows from our experiments (see Section 9.2.1) that
documents with regular structure can be reduced up to 40% better using the adaptive
modeling. On the other hand, documents with complex and irregular structure cause the
escape mechanism to be applied very often, and the performance of the adaptive modeling
may deteriorate.



Chapter 7

The Architecture of Exalt

Exalt is written in C++, with object-oriented design in mind. We decided to implement it
as a library that would be easy to use and extend. The functionality of both the compressor
and the decompressor is present in the library.

The system is component-based. For each component, a unified interface has been
defined to make it easy to modify its functionality, or to replace it.
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Figure 7.1: Architecture of Exalt: the compressor (a) and the decompressor (b)
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The architecture of both the compressor and the decompressor is sketched in Figure
7.1. Besides the components mentioned in the figure, there is a number of less important
helper components in our system (for example, a component for conversions between text
encodings). For more detailed information about these components, please refer to the
developer documentation (Appendix B) or to the generated API documentation on the
supplied CD.

During the compression, a stream of data is produced. As can be seen in Figure 7.2, the
structure of the stream is very simple. It starts with a short header block which contains
the identification of the Exalt file format and information about the compressed data (most
importantly, the modeling strategy used for the compression). After the header block, the
compressed data follows.

HEADER COMPRESSED DATA

Figure 7.2: Structure of the compressed file

In the following sections, the individual components of our system are discussed.

7.1 XML parser

The XML parser module, as the name suggests, deals with the parsing of the input XML
documents. We have not written the complete parser by ourselves; instead, we have used
the Expat XML parser [8], an open-source SAX parser whose native language is C, and
have written C++ bindings to it. We decided to use Expat because of its speed, but it is
possible to use virtually any SAX parser.

The parser processes the input XML data and emits corresponding SAX events. These
events are passed to the XML structure modeling module (see section 7.2) for further
analysis.

The parser can work in two main modes: in the PULL mode, and in the PUSH mode.
In the PULL mode, the parser is given access to some input device (for more information

about inputs and outputs in Exalt, refer to Section 7.6). It then reads the XML document
from the device and processes it. There is no way how to stop the parser unless complete
document is processed or a parse error occurs.

In the PUSH mode, the parser doesn’t read the data by itself. Instead, it waits until
the data is supplied by other component of the system. The data is supplied to the parser
block by block, and the parsing stops when the final block is indicated or a parse error
occurs. The PUSH interface is useful for processing the data that is dynamically generated,
for example.
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7.2 XML structure modeling

This module acts as the “intelligence” of our compression scheme. It deals with the mod-
eling of the structure of the XML document. The goal of this modeling is to reduce the
amount of the data that has to be compressed. Since XML documents usually have a
rather regular structure, which contains a lot of redundant information, it is possible to
create a model of it which may be utilized in the process of compression. The modeling is
based on the analysis of SAX events that are supplied by the XML parser.

We have implemented two modeling strategies: the simple modeling strategy and the
adaptive strategy (they are described in Sections 6.2 and 6.3, respectively). While the
principles of the individual modeling strategies are significantly different, the interface of
the module remains uniform.

During the compression, the structure modeling module receives the SAX events from
the XML parser, and after processing them, it sends the data that has to be compressed
to the underlying KY grammar module (see Section 7.3). In this module, the grammar is
updated to reflect the incoming data, and possible codebits are output by the arithmetic
coder (see Section 7.4).

During the decompression, the structure modeling module receives data from the KY
grammar module and recovers corresponding SAX events from it. These SAX events
are emitted by means of the SAX emitter module, and handled either by the default
SAX receptor (for information about the SAX emitter and SAX receptor modules, refer
to Section 7.5), or by a user-supplied SAX receptor. The default SAX receptor simply
reconstructs the original XML document from the incoming SAX events and outputs it,
while the user-supplied SAX receptor may do anything the user needs.

7.3 KY grammar

Together with the arithmetic coding module (see Section 7.4), this module implements the
grammar-based compression routines, as described in the Section 3.6.1.

The module implements the greedy irreducible grammar transform and the set of reduc-
tion rules that are used to keep the grammar irreducible after it is updated. A sequential
algorithm is used to encode the grammar.

During the compression, the symbols supplied by the structure modeling module are
appended to the grammar using the greedy irreducible grammar transform. If it is nec-
essary, the reduction rules are applied to make the grammar irreducible. Depending on
the state of the updated grammar, either a terminal symbol or a variable is encoded using
the sequential algorithm and the arithmetic code, and the next symbols are processed.
The sequential algorithm encodes the grammar during its construction, making on-line
compression possible.

During the decompression, the symbols (either terminal symbols or variables) decoded
by the arithmetic decoder are appended to the grammar, and the reduction rules are
applied if the appended grammar is not irreducible. The data sequence represented by the
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appended symbol (one character in case of a terminal symbol, and a string of two or more
characters in case of a variable) is sent to the structure modeling module. This module
buffers the incoming data and once sufficient information is gathered, the model is updated
and an SAX event is possibly emitted by means of the SAX emitter module.

7.4 Arithmetic coding

In the grammar-based compression, an arithmetic code with a dynamic alphabet is used to
encode the structure of the grammar. It was clear to us that to create a usable arithmetic
coding routines would be a difficult task in itself, therefore we decided to use a third-party
sources for arithmetic coding, as in the case of the XML parser module.

The implementation of arithmetic coding that we have chosen originates from Moffat
and Witten [22]. It is written in C, and is available for academic purposes. It brings
substantial improvements to the “standard” arithmetic coding routines that have been
presented by Witten in 1987. Its most important features are the support for large al-
phabets, the use of fewer multiplicative operations, and the overall speed. Furthermore, it
completely divorces the coder from the modeling and probability estimation.

In order to make the use of the arithmetic coder simple, we have devised a unified
C++ interface to the arithmetic coding module, and have rewritten the Moffat and Wit-
ten’s routines to C++ such that they conformed to this interface. Using the C++ inheri-
tance mechanism, it is easy to switch to different implementations of arithmetic coding, if
necessary.1

When using the sequential algorithm to encode the grammar, arithmetic coding is used
to encode the symbols (terminal symbols and variables) that are appended to the grammar.
Because the number of variables varies (usually it grows) during the construction of the
grammar, a dynamic alphabet has to be used. Sequential algorithm deals with the growing
alphabet this way: each time a new variable is introduced by the grammar transform, the
KY grammar module instructs the arithmetic coding module to install this symbol into
the symbol table. Thanks to that, it is always guaranteed that the arithmetic coder knows
the encoded symbols, and no escaping is necessary.

During the decoding, arithmetic decoder recovers the symbols and gives them forth to
the KY grammar module. In the sequential algorithm, the grammar is repeatedly adjusted
by appending these symbols to it, with the reduction rules applied if they are necessary.
If a new variable is introduced after the update of the grammar, the arithmetic coding
module is instructed to install it to its symbol table. Thus, any eventual occurrence of the
new variable in the subsequent data will not confuse the arithmetic decoder.

1Actually, the same holds to more or less any component of the system.



7.5 SAX emitter and SAX receptor 78

7.5 SAX emitter and SAX receptor

The original XML document is compressed on the basis of SAX events that are supplied
by the XML parser. During the decompression, we find ourselves in a reverse situation:
the decoder incrementally processes the compressed data and emits SAX events that it has
recovered from it. Based upon this events, the original document is reconstructed.

To make the emitting and handling of SAX events simple, Exalt contains two specialized
components: SAX emitter and SAX receptor. The only function of the SAX emitter is
to deliver the SAX events to the SAX receptor. Whenever the decompressors recovers
complete information about a certain SAX event, it passes it to the SAX emitter, which
forwards it to the SAX receptor for the processing. It up to the SAX receptor, how the
event is handled.

By default, Exalt uses a SAX receptor that simply reconstructs the original data from
the SAX events, and outputs it. However, it is possible to register a user-defined SAX
receptor and handle the events in a different way. Thanks to that, a transparent SAX
parsing of the compressed data is possible.

7.6 Inputs and outputs

We designed Exalt to support various types of inputs and outputs. In order to make this
possible, Exalt works with a higher level abstraction to input and output, which we call
IO devices. At present, only files are supported, but it is easy to use any other “device”,
such as the network or some database, for example. We have defined a unified interface
for the work with the IO devices, and by using the inheritance mechanism, it is easy to
create new custom devices for a C++ programmer.

The life cycle of each IO device consists of three main phases: At first, the device must
be prepared, then it is being used for some time, and at the end, it must be finished. To
illustrate the work with the IO devices, consider a device that represents a file. Suppose
that we want to write some data to that file. In the preparation phase, the file is opened
for writing. After that, it is possible to write the data to the device. At the end, we close
the file by finishing the device.

When the application supplies a device to the (de)compressor, it is supposed that it
is already prepared. After the (de)compressor processes the data, it does not finish the
device—it is up to the application to finish the work with it.
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Implementation issues

8.1 Grammar-related operations

In a grammar-based system, the most time consuming operations are those related to the
building of the grammar and its updating. In this chapter, we describe our implementation
of these operations.

We represent the grammar by a linked list of production rules. Similarly, each pro-
duction rule is represented by a doubly linked list of terminal symbols and variables. The
terminal symbols contain numeric values (representing character codes in most occasions),
whereas the variables contain pointers to associated production rules. In each production
rule, pointers to its first and last symbol are stored.

In our compression scheme, we have implemented the greedy irreducible grammar trans-
form for construction of the grammar, and the sequential algorithm for its encoding. For
more detailed information, refer to Section 3.6.1 (page 31).

8.1.1 Reduction Rules

In the greedy irreducible grammar transform, the grammar is constructed by appending
symbols representing the longest possible prefix of the input data to the root production
rule. In each step, exactly one symbol is appended. This symbol is either a variable
representing a production rule of the grammar, or a terminal symbol representing the first
character of the input data. After the symbol is appended, three Reduction Rules1 may
be performed to keep the grammar as compact as possible.

Reduction Rule 1 ensures that the production rules are used at least two times in the
range of the grammar. If some of the production rules is used only once, it is removed
from the grammar, and its content is inserted into the production rule that referenced it.

Reduction Rule 2 ensures that no digram (i.e. a pair of two adjacent symbols) appears
in two non-overlapping positions in the range of the root production rule. If some digram

1In Section 3.6.1, two more Reduction Rules are defined. However, these are not required because of
the nature of the greedy irreducible grammar transform.
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appears two times in the root production rule, a new production rule representing this
digram is created, and each occurrence of the digram in the root production rule is replaced
by the variable referencing the new rule.

Reduction Rule 3 is similar to Reduction Rule 2, except that it ensures that no digram
appears in two distinct production rules. If some digram appears in two distinct production
rules, a new production rule representing this digram is created, and each occurrence of
the digram in both production rules is replaced by the variable referencing the new rule.

Let α be the last symbol of the root production rule before β is appended to it. It
follows from Theorem 3 (see page 37) that three possible scenarios may happen:

• The digram αβ does not appear in two non-overlapping positions in the range of the
grammar. Then no Reduction Rules can be applied.

• The digram αβ appears in two non-overlapping positions in the range of the grammar,
and new rule has been introduced in the previous update operation. Then apply
Reduction Rule 2 if αβ repeats itself in the root production rule, and Reduction
Rule 3 otherwise.

• The digram αβ appears in two non-overlapping positions in the range of the gram-
mar, and no new rule has been introduced in the previous update operation. Then
apply Reduction Rule 2 followed by Reduction Rule 1 if αβ repeats itself in the root
production rule, and Reduction Rule 3 followed by Reduction Rule 1 otherwise.

To make the detection of repeated digrams efficient, we store the digrams in a hash
table. Specifically, for each symbol in the grammar (terminal symbol or variable), we keep
track of the symbols that adjoin it somewhere in the range of the grammar. In the hash
table, each symbol is assigned a list of adjoining symbols and pointers indicating their
location. In our implementation, we use two hash tables, one for storing the adjoining
symbols of terminal symbols and one for storing the adjoining symbols of variables.

During the processing of the input data, the set of digrams is updated by adding new
digrams, or by removing the existing ones. If no Reduction Rule is applicable, one lookup
in the hash table is necessary. Reduction Rule 1 requires up to three lookups in the hash
table, and Reduction Rules 1 and 2 require up to four lookups. In the worst case, when
Reduction Rule 2 or 3 is followed by Reduction Rule 1, seven lookup operations may be
performed.

Example 8.1. Suppose that the string abracadabra has been processed using the greedy
irreducible grammar transform. The resulting grammar representing this string looks as
follows:

s0 → s1cads1

s1 → abra

In Table 8.1, the representation of the digrams in the hash tables after processing the string
is displayed. 2
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Terminal digrams Variable digrams
Symbol Adjoining symbols Symbol Adjoining symbols
a d, b s1 c
b r
c a
d s1

r a

Table 8.1: Digrams after processing the string abracadabra

8.1.2 Searching for the longest prefix

In each step of the greedy irreducible grammar transform, a symbol representing the longest
possible prefix of the input data is appended to the root production rule of the grammar.
If there are production rules in the grammar that represent a prefix of the input data, the
one that represents the longest string is appended to the root production rule. Otherwise,
the first character of the input data is appended.

It follows from the above that in each step, we have to test the production rules of
the grammar whether they represent a prefix of the input data. This may be a serious
problem for large grammars consisting of thousands of production rules. Fortunately, it
shows that there are often production rules in the grammar that represent prefixes of many
(ten, twenty, . . . ) other production rules. In our implementation, we make use of this fact.
For example, suppose that the grammar contains the following two production rules:

si → sj11 . . .

sj → 00

Clearly, sj represents a prefix of si. Suppose that sj was tested before si, and did not
represent a prefix of the input data. Since sj is a prefix of si, it is obvious that si cannot
match the input data, too. Therefore, it would make no sense to test si. In the case that
si was long, we might have saved substantial time by ignoring it. In our implementation,
each rule is assigned a list of production rules that it is a prefix of. If the production rule
does not represent a prefix of the input data, the production rules in the corresponding
list are ignored in the current round of tests.

Similar situation may happen if the production rule si were tested before sj. Since sj
represents a prefix of si, it is matched against the input data first. This is the same as if
sj were tested alone, not as a prefix of another rule. Thus, we can remember the results
for sj and omit sj in the subsequent tests.

The data is supplied in blocks to the compressor. Therefore, it may happen that
there are production rules in the grammar that represent strings longer than the data
currently available in the buffer. If these production rules match the content of the buffer,
we have to wait for the next data to see whether they match completely. To make this
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possible, a position within these production rules after processing the data buffer has to
be remembered.

After the tests, the longest completely matching production rule is appended to the
root production rule, if such production rule exists; otherwise, the first symbol of the input
data is appended.

8.1.3 Sequential algorithm

In our grammar-based compression scheme, we have implemented the sequential algorithm
(see page 41) for the encoding of the grammar. In the sequential algorithm, the grammar
is encoded incrementally using the arithmetic code with dynamic alphabet. Initially, the
alphabet contains all possible values of terminal symbols (in our case, it contains characters
with codes from 0 to 255).

The sequential algorithm works as follows. After a symbol (terminal symbol or variable)
is appended to the root production rule of the grammar, it is arithmetically encoded and its
frequency count is updated. If a new production rule has been introduced after appending
the symbol and applying Reduction Rules 1-5, arithmetic coder is instructed to install
the corresponding variable into its symbol table. Therefore, the alphabet used by the
arithmetic code grows as new production rules are introduced.

The decompressor operates in a reverse fashion: it decodes the symbol, adjusts its
frequency counts, appends it to the root production rule of the grammar, and applies
Reduction Rules 1-5. In the case that a new production rule has been introduced, the
corresponding variable is added into the symbol table used by the arithmetic decoder.

In a real implementation, it is not always necessary to install new symbols into the sym-
bol table used by the arithmetic (de)coder whenever a new production rule is introduced.
This is possible due to the following reason. Each time Reduction Rule 1 is applied, some
of the production rules is removed from the grammar—and the symbol in the symbol table
that corresponds to this production rule becomes useless. If we assign these “orphan” sym-
bols to the newly created rules, there is no need to install new identifiers into the symbol
table.

Some policy for the assignments of the orphan symbols has to be adopted to make it
possible for the decompressor to uniquely identify the production rules. In our system, we
use a queue of orphan symbols in both the compressor and the decompressor. Each time a
new orphan symbol is introduced, it is enqueued to the queue. After a new rule is created,
the queue of the orphan symbol is checked first. If the queue is not empty, a symbol is
dequeued and assigned to the production rule. Only if the queue is empty, new symbol
has to be created and installed into the symbol table used by the arithmetic code.

8.2 Modeling of XML structure

The modeling of XML structure represents an important component of our compressor.
We have implemented two modeling strategies: the simple modeling and the adaptive
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modeling (see Sections 6.2 and 6.3). In the subsequent text, we unveil some details on the
implementation.

In both the simple and the adaptive modeling, we use hash tables for storing the
information about the elements and the attributes. In the simple modeling, one hash table
is used for both the elements and the attributes, whereas in the adaptive modeling, two
separate hash tables are used. For each element (or attribute), its unique numeric identifier
is stored in the hash table, and can be accessed by the name of the element (or attribute).
In the adaptive modeling, each record in the element hash table contains also a pointer to
a corresponding model (see Section 8.2.1 below).

During the compression, the modeling is based on the SAX events that are supplied by
the XML parser. Depending on the type of the events and on the type of the modleing
method, various actions may be performed. In most occasions, the content of the event in
transformed into a mixture of structural symbols and data in some way, and output using
a specified output device.

During the decompression, the situation is a little bit more complicated, since the
underlying grammar-based decompressor supplies the data by short blocks. The modeling
component therefore has to buffer the incoming data (we use a queue), and to process it
only when a sufficient information is gathered.

While the simple modeling operates in a rather simple manner (it only encodes the
incoming SAX events using a predefined set of structural symbols, and encodes the repeated
occurrences of elements and attributes by indexes to the hash table), the adaptive modeling
is much more complicated.

8.2.1 Adaptive modeling

During the adaptive modeling, element models are being built to describe the structure of
the elements. Based upon the information supplied by these models, the compressor and
the decompressor try to predict the structure of the elements.

We represent the element models by a list of their states. In each state, its type, the list
of outgoing transitions, and a pointer to the most probable (or deterministic) transition
that leads out of the state are stored. The element states contain also a pointer to the
“nested” element model. The transitions contain a frequency counter, and a pointer to
their end state.

Initially, the element models consist of one initial state and one attribute state. During
the processing of the data, new states are added to the list of states, and new transitions
are added to the states. In each model, a pointer to the current state is stored.

A specific situation occurs when an element state (representing a nested element) is
encountered in the model. In that case, the initial state of the nested model is entered.
When the nested element ends (i.e. an accepting state is visited in its model), we return
back to the element state of the parent model.

Since the elements are nested in XML documents, we store the models in a stack to
reflect this structure. Each time a new element is encountered, its model is pushed onto
the stack. Similarly, when the element ends, the model is removed from the stack.
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Experimental evaluation

In this chapter, we evaluate the performance of Exalt on several types of XML documents.
A comparison to some of the other XML-conscious compressors (XMill and XMLPPM), as
well as to the general-purpose compressors (Gzip, Bzip2, and Sequitur) is presented. We
also examine the performance of the simple and adaptive modeling strategies in terms of
compression and decompression times, and compression ratios achieved.

An interesting general-purpose compressor involved in our tests is Sequitur (see Sec-
tion 3.6.2). Because it is based on a syntactical compression technique that is in many
ways similar to the grammar-based codes, which we have used in our compression scheme,
it surely deserves a special attention. Thanks to its ability to identify the hierarchical
structure of the data, Sequitur performs extremely well on structured and semi-structured
inputs (such as sources of computer programs). It was an interesting test for us to see how
well it stacked up when applied to XML.

The experiments were performed on a Linux, 1.5GHz Pentium 4 machine with 256MB
of main memory. In the tests, the compressors were run under their default settings.

9.1 Our corpus

In our tests, we used the XML documents that came with the XMLPPM compressor, and
added several others to them to make the corpus more rich. In Table 9.1, the documents
in the corpus are listed, and divided into three categories depending on their type.

Textual documents have a rather simple structure (small amount of elements and at-
tributes) and relatively long character data content. We used four Shakespearean plays1

and two computer tutorials (python and emacs) for the tests. While the Shakespearean
plays are fairly structured (they contain several types of elements), the tutorials consist of
only one element with long character data content, and allow us to evaluate the perfor-
mance of grammar-based codes on textual data.

Regular documents consist mainly of structured and regular mark-up, and short char-
acter data content. Typically, the values of structural entropy are small (far below 0.10).

1http://www.ibiblio.org/xml/examples/shakespeare/
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Often, the documents have a repetitive structure (periodic, stats1, weblog).

Textual documents
antony 246 KB “The Tragedy of Antony and Cleopatra” marked up as XML
errors 134 KB “The Comedy of Errors” marked up as XML
hamlet 273 KB “The Tragedy of Hamlet, Prince of Denmark” marked up as XML
much ado 197 KB “Much Ado about Nothing” marked up as XML
python 124 KB Python tutorial (LATEX source enclosed with one XML tag)
emacs 43 KB Emacs editor tutorial (text enclosed with one XML tag)
Regular documents
periodic 114 KB Periodic table of the elements in XML
stats1 654 KB One year statistics of baseball players (1)
stats2 599 KB One year statistics of baseball players (2)
tpc 281 KB TPC-D benchmark database2 transformed to XML
weblog 869 KB Apache Web server log transformed to XML
Irregular documents
pcc1 175 KB Formal proofs transformed to XML (1)
pcc2 247 KB Formal proofs transformed to XML (2)
qual2003 414 KB MeSH3 qualifier records
sprot 10 KB SwissProt4 representation of protein structure
tal1 717 KB Safety-annotated assembly language converted to XML (1)
tal2 498 KB Safety-annotated assembly language converted to XML (2)
tal3 246 KB Safety-annotated assembly language converted to XML (3)
treebank 6 KB Parsed English sentences from Wall Street Journal
w3c 197 KB XML language specification
File Size Description

Table 9.1: Our XML corpus

Irregular documents have complex and irregular structure. The documents in this cat-
egory can be characterized by fairly large structural entropy values (0.50 and more). Some
of the documents contain quite a lot of character data (for example, w3c and qual2003),
while the others—often computer-generated and not very legible for humans—do not con-
tain any character data at all (for example, pcc1 and tal1).

4http://www.nlm.nih.gov/mesh/meshhome.html
4http://www.expasy.ch/sprot
4http://www.tpc.org
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9.2 Performance results

9.2.1 Compression effectiveness

In this section, we evaluate the compression results achieved by our XML compressor,
and compare its performance to the general-purpose compressors and the XML-conscious
compressors.

Tables 9.2, 9.3, and 9.5 summarize the compression results of the individual compressors
on textual, regular, and irregular data, respectively. The compression results are reported
in bits per original XML character. For each document, the best compression is in bold,
and the worst compression is in italic. At the bottom of each table, the average bit rate
is listed. The results for both the simple modeling (Exalt-S) and the adaptive modeling
(Exalt-A) are presented.

9.2.1.1 Textual documents

On textual data, XMLPPM achieves the best overall results, competing only with Bzip.
On average, Exalt makes it to the third position, beating the remaining compressors.

On Shakespearean plays, Exalt performs consistently about 5-10% better than XMill,
and about 15% better than Gzip. This is a rather optimistic result for us, since it indicates
that the grammar-based compression might be a rival to the dictionary-based techniques
on textual data. From this point of view, we were particularly interested in the results
on the documents emacs and python. These documents consist of only one element with
long character data content, and have been included in the corpus to test the performance
of the compressors on unstructured text data. It follows from the results that the syntac-
tical compressors (Exalt and Sequitur) compress the documents roughly the same as the
dictionary-based compressors represented by Gzip and XMill. However, in a comparison to
Bzip and XMLPPM, both the syntactical and the dictionary-based compressors lag about
25% behind.

File Gzip Bzip Sequitur XMill XMLPPM Exalt-S Exalt-A
hamlet 2.267 1.647 2.000 2.153 1.590 1.932 1.977
errors 2.141 1.630 2.020 2.058 1.566 1.970 2.018
much ado 2.099 1.534 1.889 1.961 1.481 1.808 1.875
antony 2.160 1.549 1.900 2.039 1.489 1.879 1.898
emacs 2.755 2.432 2.967 2.759 2.262 2.934 2.920
python 2.658 2.256 2.767 2.659 2.121 2.709 2.702
Average 2.347 1.841 2.257 2.272 1.752 2.205 2.232

Table 9.2: Performance on textual data

Although the Shakespearean plays contain a fair amount of XML mark-up, the adaptive
modeling yields about 2% worse results than the simple modeling. The reason is that the
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elements in these documents form a rather irregular structure, which causes the escape
mechanism to be applied quite often in the adaptive modeling. Therefore, the compression
deteriorates a little.

During our experiments on textual data, it became obvious that XMLPPM and Bzip
compressors would be extremely difficult to beat for the remaining compressors involved
in the tests. This was confirmed by our experiments with structured XML data.

9.2.1.2 Regular documents

While the compression rates ranges from 1.5 to 2.8 bits per character in the case of textual
documents, the compressors perform considerably better on the regular documents, often
achieving compression rates below 0.5 bits per character.

Again, XMLPPM and Bzip perform the best. XMill yields considerably better results
than on textual data, and approaches the compression rates of Bzip and XMLPPM. Using
the simple modeling, Exalt performs about 16% worse than XMill on average, which was
a sort of let-down for us. And although the adaptive modeling improves on the simple
modeling about 7% on average, the overall results were far away behind our expectations.

File Gzip Bzip Sequitur XMill XMLPPM Exalt-S Exalt-A
stats2 0.750 0.338 0.498 0.403 0.288 0.484 0.384
tpc 1.475 1.100 1.347 1.144 1.092 1.322 1.313
stats1 0.798 0.368 0.535 0.425 0.314 0.516 0.422
periodic 0.603 0.404 0.510 0.421 0.370 0.472 0.487
weblog 0.337 0.173 0.262 0.217 0.190 0.251 0.251
Average 0.793 0.477 0.630 0.522 0.451 0.609 0.571

Table 9.3: Performance on regular data

In three occasions (stats1, stats2, and tpc), the adaptive modeling yielded better
results than the simple modeling. On the remaining documents, it performed the same,
or even worse (periodic). To find out why is this possible, we examined the data gener-
ated during the simple and the adaptive modeling. We observed that by using the adaptive
modeling instead of the simple modeling, the amount of the data that has to be compressed
can be reduced by 10-40%, depending on the structural properties of the document. How-
ever, it shows that—no matter how big the reduction is—the grammar-based coding in
itself is powerful enough to eliminate the redundant information, too.

As an experiment, we compressed the output of the simple and the adaptive modeling
using Gzip and Bzip. The results are summarized in Table 9.4.

Gzip compressed the transformed data much better than raw XML data. The sim-
ple modeling improved the average compression rate of Gzip by 10%, and the adaptive
modeling even by 20%. Still, Gzip performed about 10-15% worse in a comparison to our
grammar-based compressor. In the case of Bzip, the improvement was only negligible: 3%
for both the simple and adaptive modeling. As opposed to Gzip (and similarly to our
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File Exalt-S Exalt-A Gzip-S Gzip-A Bzip-S Bzip-A
stats2 0.484 0.384 0.600 0.468 0.322 0.322
tpc 1.322 1.313 1.429 1.388 1.090 1.088
stats1 0.516 0.422 0.634 0.492 0.352 0.350
periodic 0.472 0.487 0.569 0.564 0.384 0.389
weblog 0.251 0.251 0.302 0.293 0.174 0.172
Average 0.609 0.571 0.707 0.641 0.464 0.464

Table 9.4: Comparison of the simple and the adaptive modeling

compressor), Bzip succeeds in discovering the structural redundancy within the data, and
the adaptive transformation does not bring any substantial compression gain.

9.2.1.3 Irregular documents

On irregular documents, XMLPPM performed the best on average. However, it was beaten
by Bzip and XMill in several occasions. The compression rates tend to be surprisingly
small, often below 0.3 bits per character. We believe that this is caused by the fact that
most of the documents (except for qual2003 and w3c) contain only a short character data
content, if any.

File Gzip Bzip Sequitur XMill XMLPPM Exalt-S Exalt-A
pcc1 0.361 0.206 0.306 0.214 0.186 0.301 0.317
treebank 1.782 1.524 2.057 1.249 1.171 1.735 1.932
pcc2 0.311 0.166 0.290 0.164 0.168 0.274 0.269
tal2 0.321 0.149 0.246 0.183 0.147 0.252 0.271
tal3 0.328 0.195 0.306 0.200 0.175 0.312 0.322
qual2003 0.650 0.378 0.556 0.437 0.393 0.534 0.544
tal1 0.312 0.121 0.211 0.164 0.139 0.213 0.238
w3c 2.139 1.721 2.174 2.273 1.592 2.190 2.226
Average 0.776 0.558 0.768 0.610 0.497 0.726 0.765

Table 9.5: Performance on irregular data

The adaptive modeling performed about 5% worse than the simple modeling on the
irregular documents, which was a rather expected behavior. Because it is difficult to predict
the structure of the documents in the adaptive modeling, the escape mechanism is used
frequently. And because the escaping carries a penalty in coding effectiveness, the overall
compression performance worsens.

Probably the most complex document in our corpus is the XML language specification
(w3c), which contains a very irregular structure and long character data content. Also,
additional XML mark-up (such as comments, CDATA sections and entity declarations) is
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used heavily. When applied to this document, only two compressors (Bzip2 and XMLPPM)
managed to achieve compression rates below 2 bits per character, while the remaining
compressors had considerable difficulties. Surprisingly enough, XMill performed the worst,
leaving Gzip and our compressor (using the simple modeling) about 5% behind.

9.2.2 Compression time

Besides the compression ratios, we measured also the compression times for the documents
in our corpus. In Table 9.6, the results are summarized.

File Gzip Bzip2 Sequitur XMill XMLPPM Exalt-S Exalt-A
hamlet 0.070 0.240 0.900 0.080 1.960 13.380 13.730
errors 0.030 0.110 0.440 0.030 0.820 3.490 3.650
antony 0.220 0.050 0.810 0.050 1.680 15.780 10.220
much ado 0.050 0.180 0.590 0.050 1.230 5.980 7.160
emacs 0.010 0.050 0.130 0.010 0.280 1.090 0.980
python 0.030 0.090 0.370 0.040 1.110 5.710 5.520
stats2 0.040 0.870 2.300 0.070 1.320 3.830 10.070
tpc 0.030 0.270 1.080 0.050 1.380 5.700 6.090
stats1 0.070 0.950 2.910 0.080 1.500 4.640 4.790
periodic 0.010 0.090 0.460 0.010 0.260 0.360 0.350
weblog 0.060 2.810 3.460 0.070 2.220 15.960 13.330
pcc1 0.010 0.190 0.590 0.030 0.350 0.580 1.150
treebank 0.001 0.001 0.020 0.001 0.030 0.030 0.060
pcc2 0.020 0.310 0.770 0.040 0.490 0.850 2.880
tal2 0.040 0.820 1.600 0.050 1.130 1.410 3.230
tal3 0.010 0.230 0.840 0.040 0.530 0.550 0.930
qual2003 0.020 0.430 1.540 0.020 1.270 3.860 3.760
tal1 0.050 1.500 2.460 0.080 1.620 2.200 6.070
w3c 0.040 0.140 0.570 0.040 1.670 11.510 11.100
Average 0.043 0.491 1.490 0.044 1.097 5.100 5.530

Table 9.6: Compression times (in seconds)

It follows from the table that Exalt is the slowest of the compressors. On average, it
compresses about 5 times slower that XMLPPM and Sequitur, and about 10 times slower
than Bzip. While the loss is not so significant on structured documents (periodic, pcc,
tal), the compression times increase substantially on long documents and on documents
with long character data content.

The adaptive modeling causes our compressor to run slower in a comparison to the
simple modeling. However, the difference is not as dramatic as expected. While the
adaptive modeling is slower by a factor of 3 on documents with intricate structure (stats2,
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pcc2, tal1), it is faster in several occasions (antony, weblog). We believe that the reason
is that the adaptive modeling filters out a lot of redundant information from the data, and
therefore the underlying compressor can operate faster. However, if the structure of the
document is too complex, the adaptive modeling runs slower, and these benefits are lost.

It is interesting to compare the performance of our compressor to that of Sequitur.
Although both compressors are based on a similar grammar-inferring technique, Sequitur
evidently runs faster. There are two main reasons for this. First, Sequitur operates in a
much simpler manner. It does not search for production rules that represent the longest
prefix of the input data (which is a rather time consuming operation in our compressor).
Instead, the data is processed character by character. Moreover, the conditions on the
grammar are not as restrictive as in the case of the grammar-based coding, and can be
expressed in a form of two simple constraints. Second, we know that our implementation
of grammar-based coding surely is not the most optimum, and that there are several
components in our compressor whose functionality can be improved. However, our goal
was more to test the potentials of the grammar-based coding, and to establish an illustrative
framework for further research, than to present an ideal implementation.
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Conclusions and further work

In this thesis, we investigated the possibilities of XML data compression based on grammar-
based coding and probabilistic modeling of the XML structure. We have implemented a
prototype XML compressor called Exalt and tested its performance on a variety of XML
documents. The compressor is not a “black box” type of application. Rather than this, it
was intended to provide a framework for experiments and further research in the field of
syntactical compression of XML. Thanks to the object-oriented nature of our compressor,
it is easy to extend or to improve its functionality.

The grammar-based coding, introduced recently by Kieffer and Yang [16, 15], represents
a rather novel and interesting topic in the field of lossless data compression, and is still a
subject of intense research. Our compressor is the first practical implementation of this
promising compression technique that we are aware of.

The modeling of XML structure plays an important role in the process of XML data
compression. We have implemented two modeling strategies which we call the simple
modeling and the adaptive modeling, respectively. While the first strategy is quite onefold,
the latter improves on it and is much more sophisticated. Moreover, the adaptive modeling
gives us resources for measuring the structural complexity of XML documents.

Although our compressor is fully functional, there are several areas where there is a
room for improvements or enhancements.

The grammar-based coding—as implemented in our compressor—uses the sequential
algorithm for the encoding of the grammar. Kieffer and Yang have proposed other al-
gorithms in [16, 15], which may yield better results but are more difficult to implement.
Without any doubt, it would be interesting to examine the behavior of these algorithms,
and to compare their influence on the properties the resulting grammar-based code.

We have proposed two modeling strategies for the compression. We expect that the
performance of the compressor can be further improved by using more sophisticated mod-
eling.

Last but not least, many of the algorithms can be optimized. For example, the most
time consuming operations are those related to the building of the grammar. By optimizing
these operations and the data structures involved, one may substantially improve the
overall performance of the compressor.



Appendix A

User documentation

A.1 Building and installing

Exalt is suggested to be used on Unix type of platforms (such as Linux). It requires the
Expat XML parser, version 1.95.5 or above1, to be installed in your system. If Expat is
not present, or if you are using an older version, please install the current version, which
is available for example at [8].

To make the building and the installing simple, Exalt uses the GNU Autotools. The
complete process of installation can be described in the following steps:

1. Copy the file exalt-0.1.0.tar.gz from the supplied CD to some local directory (for
example to your home directory):

$ cp exalt-0.1.0.tar.gz /home/me

2. Untar the archive by executing:

$ cd /home/me
$ tar zxf exalt-0.1.0.tar.gz

3. Change to the newly created directory containing the source code:

$ cd exalt-0.1.0

4. Configure the package for your system:

$ ./configure

5. Compile the package:

$ make

1Versions of Expat prior to 1.95.5 contain a bug that causes incorrect SAX handlers to be called in
some occasions. Also, some valid UTF-8 encoded documents are rejected.
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6. If you have right permissions, install the library, the binaries, and the reference and
API documentation:

$ make install

The configure script attempts to guess correct values for various system-dependent
variables used during compilation. It checks for required software and configures the Make-
files and header files to reflect the settings of your system.

There are various command-line options you can pass to the configure script to modify
its default behavior. The most important options are listed below:2

• --prefix

By default, the Exalt library gets installed in /usr/local/lib, the binaries in
/usr/local/bin, and the header files in /usr/local/include. To change this be-
havior, use the option --prefix=dir. The library, the binaries, and the header files
will be then installed in dir/lib, dir/bin, and dir/include, respectively.

• --enable-docdir

By default, the documentation gets installed in /usr/share/doc/exalt. To install
the documentation in a different directory, use the option --enable-docdir=dir.
The documentation will be then installed in the directory dir.

• --enable-expatdir

If the Expat parser is installed in some nonstandard location, you can use the option
--enable-expatdir=dir. The Expat library and header files will be then expected
to reside in dir/lib and dir/include, respectively.

Note. If the Exalt package has been installed in some nonstandard location (for example
/home/me/exalt), it is important to ensure that the LD LIBRARY PATH environment vari-
able contains the entry pointing to the library files (for example /home/me/exalt/lib),
and the PATH environment variable contains the entry pointing to the location of binary
files (for example /home/me/exalt/bin).

A.2 Using the command-line application

The distribution comes with a simple and easy to use command-line application that
demonstrates the functionality of the library. It is named exalt and allows you to compress
and decompress XML files in a convenient way.

After installation, you can test the application by typing:
2You can find out all the options available by running configure with just the --help option.
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$ exalt -h

This command executes the application and displays the use information. (If nothing
happened, please check your PATH environment variable.)

The arguments of exalt are file names and options in any order. The possible options
are listed below:

• -s .suf (or --suffix .suf)

Use the suffix .suf on compressed files. Default suffix is .e.

• -d (or --decompress)

Decompress file(s).

• -f (or --force)

Overwrite files, do not stop on errors.

• -c (or --stdout)

Write on standard input.

• -a (or --adaptive)

Use the adaptive modeling strategy for compression.

• -x (or --erase)

Erase source files.

• -e enc (or --encoding enc)

Set the decompressed data encoding to enc. Currently supported encoding is UTF-8.

• -l (or --list-encodings)

List the recognized encodings. These encodings are not necessarily supported by
exalt. They are present for future enhancements of the Exalt library.

• -v (or --verbose)

Be verbose.

• -m (or --print-models)

Display the element models. This option makes sense only if the adaptive modeling
strategy is turned on. (Beware: the models may be huge! )

• -g (or --print-grammar)

Display the generated grammar. (Beware: the grammar may be huge! )
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• -V (or --version)

Display the version number.

• -L (or --license)

Display the version number and the software license.

• -h (or --help)

Display the usage information.

The default action is to compress. If no file names are given, or if a file name is ’-’,
exalt compresses or decompresses from standard input to standard output.

For example, if you want to compress file.xml in the verbose mode using the adaptive
model, and if you wish also to display the generated grammar, use the following command:

$ exalt -a file.xml -v -g

If everything went all right, a file named file.xml.e is created. The original file
file.xml can be restored by executing the command below:

$ exalt -d file.xml.e

It is also easy to use exalt as a filter:

$ cat file.xml.e | exalt -d -c | more

A.2.1 How the grammar is displayed

If you pass the -g option (or --print-grammar) to exalt, it will display the content of the
grammar inferred from the input data. To demonstrate how the grammar is displayed, we
compress the XML data <a>abracadabra</a>. The resulting grammar will be displayed
as follows:

R0 (length: 21, used: 1x) -> ’0x01 a 0x00 0x04 R1 c a d R1
0x00 0x03 0x05 0x0d 0x0a 0x00’

R1 (length: 4, used: 2x) -> ’a b r a’

The grammar is given by the production rules R0 (which represents the root production
rule) and R1. The production rule R1 represents 4 characters of the input sequence, and has
been used two times. The root production rule has been used once (in fact, it can’t be used
more times) and represents the whole input sequence which is 21 characters long. The right
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sides of the production rules are displayed in apostrophes, with the symbols delimited by
spaces. If it is possible, the terminal symbols are displayed as ASCII characters, otherwise
they are displayed as hexadecimal numbers. Variables are displayed in the form of “RX”
where RX is a production rule of the grammar.

A.2.2 How the models are displayed

When the adaptive compression strategy is turned on, or when decompressing data pre-
viously compressed using the adaptive strategy, exalt can display a textual information
about the element models inferred from the data. This can be achieved by the -m option
(or --print-models). A typical record describing one element model looks as follows:

Model for element "para"

Number of references: 3
Has attributes (Yes/No): 0/3
Structural entropy: 0.636514

0 (S): 2[1], *3[2]
2 (C): *1[1]
3 (E: image): *1[2]
1 (/):

In the first row, the name of the element is displayed. The second and third rows
indicate the total number of occurrences of the element in the document, and the number
of times it had/had not attributes. The fourth row evaluates the structural entropy of
the element (for the definition, see Section 6.3.3). In the following rows, the structure of
the element model is displayed. Each row represents one node of the element model. The
structure of the (rather cryptic) notation is very simple:

First, the unique number of the node is displayed, followed by the node type. There
are four possible types of nodes: the start-of-element node (“S”), the end-of-element node
(“/”), the character data node (“C”), and the reference to another model (“E”). The rest
of the row contains a comma-separated list of edges leading out from the node. For each
edge, the number of its end node, as well as its usage count is displayed. The most often
used edges are indicated by the symbol “*”.

As an example, we describe the entry: 3 (E: image): *1[1]. It represents a node
with number 3, which is a reference to the model of element “image”. There is one edge
leading out from this node. This edge leads to the end-of-element node and has been used
two times.
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A.3 Using the library

In the following text we will demonstrate how to use the functionality of the Exalt library
in a C++ program.

A.3.1 Sample application

We present a sample application that uses the Exalt library. It takes a name of an XML
file on the command line, and compresses that file on standard output (be sure to redirect
standard output to some file or to /dev/null to avoid terminal confusion). The function-
ality of the Exalt library is made available via the ExaltCodec class, so the only thing we
have to do is to create an instance of this class, and to call an appropriate method of it.
The methods used most often are encode() and decode(). In their basic variants, they
both take two arguments: the name of the input file and the name of the output file. If
the name of the input file is NULL, standard input is used. Similarly, if the name of the
output file is NULL, the standard output is used.

When (de)compressing, a variety of errors can occur (the input data is not well-formed
XML, the file does not exist, etc.). To report these errors, Exalt uses the mechanism of
C++ exceptions. Each exception is derived from ExaltException, thus handling this ex-
ception will handle all the other exceptions. For more detailed description of the exceptions
used by Exalt, please refer to the API documentation.

So let’s have a look at the example code:

#include <exaltcodec.h>

int main(int argc, char **argv)
{
ExaltCodec codec;

if (argc < 2)
return 1;

try {
codec.encode(argv[1], 0);

}
catch (ExaltException) {
cerr << "Failed to compress " << argv[1];
return 1;

}

return 0;
}
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The example includes the header file exaltcodec.h. It is required to include this
header file in order to use the library. No other header files are necessary.

We will save the example source as example.cpp. To compile, you have to tell the
compiler where to find the library and the headers. If Exalt has been installed in the
directory /home/me/exalt, then you should pass the following options to the compiler:
-I/home/me/exalt/include -L/home/me/exalt/lib. Next to that, the linker should be
instructed to link against the Exalt library. This can be achieved by the option -lexalt.

Note. If Exalt has been installed in the standard location (the default suggested by
configure), you probably do not have to specify the options mentioned above (except
-lexalt).

$ c++ -o example example.cpp -I/home/me/mystuff/include
-L/home/me/mystuff/lib -lexalt

If everything went all right, a sample application has been built. We will test it on
some XML data:

$ ./example sample.xml > tmpfile

If the file sample.xml exists in the current directory, and the XML data is well-formed,
the compressed data is written to the file tmpfile. If you compare the sizes of sample.xml
and tmpfile, the latter one should be smaller.

A.3.2 Using the PUSH interface

When compressing, the Exalt library can work in two main modes: in the PULL mode
and in the PUSH mode.

The PULL interface means that the input data is read from the input stream by the
coder. This is useful mainly in the occasions when you are compressing some files. The
sample application presented in the previous section demonstrates the use of the PUSH
interface.

The PUSH interface means that the application supplies the data to the coder by
itself. This mode can be used for compression of the data that is dynamically generated.
The PUSH mode has a different semantics from that of the PULL mode. In order to
use the PUSH interface, you have to use following two methods of the ExaltCodec class:
initializePushCoder() and encodePush().

The initializePushCoder() method must be called before any calls to encodePush().
It initializes the coder in the PUSH mode. In its basic variant, the method requires a name
of an output file as a parameter.

The encodePush() method encodes given block of XML data. The method takes three
parameters: the pointer to the data, the length of the data, and the flag indicating the last
block of data.
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Note. Any attempt to use the PUSH coder in the PULL mode (or vice versa) is con-
sidered to be an error. If you attempt to use the PUSH coder in the PULL mode,
ExaltCoderIsPushException exception is raised. Similarly, the use the PULL coder in
the PUSH mode causes the ExaltCoderIsPullException exception to be raised.

Below you can see a fragment of code that demonstrates the PUSH functionality of the
library:

...

ExaltCodec codec;
int length;
bool finished = false;

codec.initializePushCoder(fileName);

while (!finished) {
data = generateData(&length, &finished);
codec.encodePush(data, length, finished);

}

...

A.3.3 Using the SAX interface

Exalt can act (with some limitations) as an ordinary SAX parser on the compressed XML
data. It can read the stream of compressed data and emit SAX events to the application.
The SAX interface is similar to that of the Expat XML parser.

To use the SAX event facilities, you have to inherit the SAXReceptor class and reim-
plement appropriate event handling methods (for details, please refer to the API docu-
mentation). The second step is to use a special variant of the decode() method of the
ExaltCodec class, which takes a pointer to an instance of SAXReceptor instead of the
name of the output file. The optional parameter of this method is a generic pointer to the
user data structure. This pointer is passed to the handlers of the receptor.

The handlers defined by the class SAXReceptor are listed in Table A.5. By default, the
handlers do nothing unless you overload them.

For more details on the meaning of the individual handlers, as well as for the description
of their parameters, please refer to the API documentation.

Note. If you are familiar with SAX parsing, you probably noticed that the list of handlers
is not complete. For example, there is no way to handle the external entity references,
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Handler Description
startElement() Start element event
endElement() End element event
characterData() Character data event
processingInstruction() Processing instruction event
comment() Comment event
startCDATASection() Start CDATA event
endCDATASection() End CDATA event
xmlDecl() XML declaration event
startDoctypeDecl() Start document type declaration event
endDoctypeDecl() End document type declaration event
entityDecl() Entity declaration event
notationDecl() Notation declaration event
defaultHandler() Default data (unrecognized by the parser)

Table A.5: Available SAX handlers

or the element or attribute declarations in the DTD. This is caused by the design of the
Exalt library. To diminish this drawback, Exalt tries to report as most of this information
as possible via the defaultHandler() handler.

The following example demonstrates the use of the startElement() handler:

#include <exaltcodec.h>

class MySAXReceptor : public SAXReceptor
{
public:
void startElement(void *userData, const XmlChar *name,

const XmlChar **attr)
{
cout << "Element " << name << endl;

if (attr)
for (int i = 0; attr[i]; i += 2)
cout << "Attribute " << attr[i]

<< " has value " << attr[i+1] << endl;
}

};

int main(int argc, char **argv)
{
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ExaltCodec codec;
MySAXReceptor receptor;

if (argc < 2)
return 1;

try {
codec.decode(argv[1], &receptor);

}
catch (ExaltException) {
cerr << "Failed to decompress " << argv[1];
return 1;

}

return 0;
}

A.3.4 Changing the default options

There are various options that affect the behavior of the library. In most occasions, there
is no need to change the default settings, because the library works quite fine without any
user/programmer assistance.

The library uses a static class ExaltOptions for setting and reading the options. This
class contains methods setOption() and getOption() for setting the option values, and
for reading the option values, respectively. The possible options and their values are listed
below:

• ExaltOptions::Verbose

Determines whether the library should be verbose. In the verbose mode, some textual
information is displayed on the standard error output. Possible values:

– ExaltOptions::Yes – Be verbose.

– ExaltOptions::No – Don’t be verbose (default).

• ExaltOptions::Model

Determines what modeling strategy is used for the compression. Possible values:

– ExaltOptions::SimpleModel – Use the simple modeling strategy for compres-
sion.

– ExaltOptions::AdaptiveModel – Use the adaptive modeling strategy for com-
pression (default).
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• ExaltOptions::PrintGrammar

Determines whether to display the grammar generated from the input data. (Beware:
The grammar may be huge! ) Possible values:

– ExaltOptions::Yes – Display the generated grammar.

– ExaltOptions::No – Don’t display the generated grammar (default).

• ExaltOptions::PrintModels

Determines whether to display the element models generated from the input data.
The models are displayed only when using the adaptive modeling strategy. (Beware:
The models may be huge!) Possible values:

– ExaltOptions::Yes – Display the element models.

– ExaltOptions::No – Don’t display the element models (default).

• ExaltOptions::Encoding

Determines the encoding of the decompressed data. Possible values:

– The MIB3 of the encoding (see the API documentation for details). The default
encoding is either Encodings::UTF 8 or Encodings::UTF 16 (depends on the
configuration of the Expat parser).

The options can be set by means of the static method setOption() of the class
ExaltOptions. To turn the verbose mode on, for example, one should call:

ExaltOptions::setOption(ExaltOptions::Verbose,
ExaltOptions::Yes)

You can also read the current values of the options with the static method getOption().
For example, the call

ExaltOptions::setOption(ExaltOptions::Verbose)

will return the current value of the “verbose” option.

A.3.5 Input and output devices

In the preceding text, the work with files was only discussed. The data was read from some
file and written to another. However, the library allows you to use any “device” you want,
such as the network, some database, etc. In order to make this possible, the library works
with so called IO devices. From the library’s point of view, file is nothing but a special
type (and the most common one) of IO devices.

3The MIBs are unique values identifying coded character sets, and are defined in the IANA Registry
[13]
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There exists an abstract class IODevice that defines the functionality (see the API doc-
umentation) that every device has to implement. Using this class and the C++ inheritance
mechanism, it is simple to create new custom devices.

How to use the new device? It is quite straightforward, since the encode(), decode()
and initializePushCoder() methods of the ExaltCodec class exist also in the variants
that accept pointers to the input devices as their parameters. Below you can see an
example:

...

codec.encode(inputDevice, outputDevice);

...



Appendix B

Developer documentation

Exalt is written as a C++ library. We intended it to be a component-based system, which
would be easy to enhance and to extend. Using the C++ inheritance mechanism, it is
possible to replace or modify virtually any component of the system.

In two occasions, we made use of third-party sources or programs. For XML parsing
tasks, we rely on the Expat XML parser [8], and for arithmetic coding, we use the routines
originating from Moffat and Witten [22]. Expat has been chosen because of its speed and
simple and clean interface, while the selected arithmetic coding routines allow us to use
large dynamic alphabets (which are required by the grammar-based codes) without being
unnecessarily slow.

B.1 Overview of the most important classes

In this section, we describe the most important classes present in our system. For each
class, its purpose and role within the scope of the system are discussed. In most occasions,
we also briefly describe the methods of the classes. For each class discussed, the related
sources are listed.

Complete information on the classes used in our system can be found in the API
documentation (see the supplied CD).

B.1.1 Collection classes

We make extensive use of various collection classes. A collection class is a class that can
contain a number of items in a certain data structure, and perform operations on them.

Each collection class is inherited from the Collection template class. In this class,
some minimal functionality—common to all of the collection classes—is defined.

The collection classes are implemented as templates to make it possible to store any
data type. The items in the collection are nothing but pointers to the contained data. It is
possible to specify whether the data referenced by these pointers should be automatically
deleted or not when the items are removed from the collection.
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There are four collection classes in our system: List, Stack, Queue, and HashTable.

List list.h

The List class represents a doubly-linked list. Items may be appended (append()) or
prepended (prepend()) to the list, or inserted at the current position of the list (insert()).
When removing the items, it is possible to remove the item at the current position in the
list (remove()), or the item with specified value (remove() with the value as a parameter).

It is easy to traverse the list by using the methods first(), last(), next(), prev(),
and current().

Stack stack.h

The Stack template class provides a stack. The items may be pushed onto the stack
(push()), or removed from the top of it (pop()). The method top() makes it possible to
access the item on the top of the stack without removing it.

Queue queue.h

The Queue class represents a queue of items. The items may be enqueued to the queue
(enqueue()), or dequeued from it (dequeue()). The method first() makes it possible
to access the first item of the queue without dequeuing it.

HashTable hashtable.h

The HashTable template class represents a hash table. The template allows to specify the
type of the keys, the type of the values, the size of the hash array and the type of container
for storing the values in the hash array. The keys can be numbers, characters and strings.

HashTable makes it possible to insert the data with given key (insert()), and to
lookup or remove the data based upon the value of the key (find(), remove()).

B.1.2 Input/output classes

The inputs and outputs are handled in a specific way in Exalt, because we wanted to
support various types of input and output devices, not just files. In order to make this
possible, we use a higher level abstraction to inputs and outputs, which we call IO devices.

The IODevice class represents an abstract predecessor to all IO devices and defines a
unified interface that each device has to implement.

Each IO device has to be prepared (prepare()) before it is possible to write to it
(writeData(), putChar()) or to read from it (readData(), getChar()). To finish the
work with the device, finish() has to be called.

There are various methods for checking the state of the device: isPrepared(), eof(),
bytesRead(), bytesWritten(), errorOccurred().
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FileDevice filedevice.h, filedevice.cpp

The FileDevice class represents an IO device for working with files. We have used the
functionality of the standard fstream class.

The prepare() method takes two parameters: the name of a file, and the mode. The
mode allows to specify whether the file should be opened for writing or reading. If the
name NULL, standard input/output is used depending on the mode. The method finish()
closes the file.

FunnelDevice funneldevice.h, funneldevice.cpp

The FunnelDevice class represents an IO device that acts as one-directional “funnel” or
pipe. It makes the communication between two objects possible: one object writes the
data to the device, and another one receives it.

In order to be able to receive the data supplied by the FunnelDevice in some class, we
have to inherit the UserOfFunnelDevice class and implement the method receiveData().
The method prepare() of the device takes the pointer to a receiver object as a parameter.

B.1.3 XML compression classes

To make the use of the compressor and the decompressor simple, there are two classes
in the system that make the functionality of both the compressor and the decompressor
available via single function calls. Both classes—XmlCodec and ExaltCodec—are derived
from the same base class (XmlCodecBase). Therefore, their interfaces differ only a little.
However, XmlCodec represents a more low-level layer than ExaltCodec which is intended
to be used by the programmers who want to use Exalt in their own programs. Actually,
ExaltCodec uses the functionality of XmlCodec internally.

XmlCodec xmlcodec.h, xmlcodec.cpp

The XmlCodec class encapsulates the functionality of both the compressor and the de-
compressor. It makes it possible to encode or to decode XML data by single function
calls.

The data may be compressed either in the PULL mode (encode()), or in the PUSH
mode (encodePush()). The method encode() takes the pointers to an input device and
an output device as its parameters. In the PUSH mode, only output device is required,
and it has to be specified by the method initializePushCoder() before the data can be
compressed. The method encodePush() takes three parameters: the pointer to a buffer of
XML data, the length of the buffer, and a flag indicating the last block of data.

To decompress the data, one should call the method decode(). This method takes
three paramaters: the pointer to an input device, the pointer to a SAX receptor, and
(optionally) the pointer to a user data structure. The pointer to this data structure will
be passed to the event handlers of the SAX receptor.
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ExaltCodec exaltcodec.h, exaltcodec.cpp

The ExaltCodec class is intended to be used by the programmers who want use the func-
tionality of our system in their own programs. Internally, ExaltCodec makes use of the
XmlCodec class, and calls its methods.

Besides the standard methods that accept only IO devices as the parameters (encode(),
initializePushCoder(), and decode()), ExaltCodec makes it is possible to use their
modifications that accept also file names as parameters.

B.1.4 XML processing classes

There are three types of classes that deal with the processing of the XML data: XmlParser,
SAXEmitter, and SAXReceptor. Since all of them operate with the SAX events in some
way, they are derived from the SAXBase abstract class. In this class, the interface for SAX
event handling is defined. The list of the available handlers (see the table below) is similar
to that of Expat XML parser.

Handler Description
startElement() Start element event
endElement() End element event
characterData() Character data event
processingInstruction() Processing instruction event
comment() Comment event
startCDATASection() Start CDATA event
endCDATASection() End CDATA event
xmlDecl() XML declaration event
startDoctypeDecl() Start document type declaration event
endDoctypeDecl() End document type declaration event
entityDecl() Entity declaration event
notationDecl() Notation declaration event
defaultHandler() Default data (unrecognized by the parser)
reportError() Report error messages
unknownEncoding() Unknown character encoding

XmlParser xmlparser.h, xmlparser.cpp

The XmlParser class represents a SAX parser. In our compressor, we have used the Expat
XML parser and have written C++ bindings to it. The parser defines several callback
methods (startElement(), characterData(), etc.) and registers them so that Expat calls
them when corresponding events occur. In most occasions, the callback methods simply
hand over the supplied data to the modeling components of the system. An exception to
this is the method unknownEncoding() which gets called when Expat is unable to recognize
the encoding of the XML document. In this method, the TextCodec class is used to create
(is it is possible) the character encoding conversion table for Expat parser.
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The parser can operate in two basic modes. In the PULL mode (parse()), the parser
reads the data from a specified IO device (setInputDevice()) by itself. Once the parsing
starts, there is no way how to stop the parser unless an arror occurs or complete document
is processed.

In the PUSH mode, the application itself supplies the data to the parser (parsePush()).
In the PUSH mode, the data is supplied by blocks; the parsing stops when the last block
is specified in the parsePush() method or an error occurs

During the parsing of the document, the parser hands over the data supplied by Expat
parser to the modeling component of the system. To specify this component, the method
setXmlModel() should be used.

SAXEmitter saxemitter.h, saxemitter.cpp

During the decompression, the SAXEmitter class is used for emitting the decoded SAX
events. The class itself only accepts the event data and forwards them to registered instance
of class SAXReceptor. To register the SAX receptor, the method setSAXReceptor() should
be called before de decompression starts.

SAXReceptor saxreceptor.h

The SAXReceptor class can be used in conjunction with the class SAXEmitter to receive
the emitted SAX events during the decompression. SAXReceptor is an abstract class (it
only defines the SAX event interface), therefore it cannot be used directly. In out system,
we inherit the OutputSAXReceptor class from it, which reconstructs XML document from
the received SAX events, and outputs it using specified IO device.

The programmers are allowed to implement and use their own SAX receptors.

B.1.5 XML modeling classes

The XML structure modeling component of our system is represented by two classes:
XmlSimpleModel and XmlAdaptiveModel. The first class implements the simple modeling
(see Section 6.2), while the latter implements the adaptive modeling (see Section 6.3).
Both classes are derived from the XmlModelBase abstract class, which defines a unified
interfaces to all modeling classes. Thanks to that, it is possible to implement new classes
that deal with the XML structure modeling.

Every XML modeling class has to implement four methods which are declared in
XmlCodecBase. The most important methods are manageEvent() and receiveData().

The method manageEvent() takes a structure describing one SAX event as the param-
eter. During the compression, this method is being called by the XML parser (XmlParser)
whenever any SAX event is emitted. In manageEvent(), the SAX-based modeling of the
XML structure is performed.

The method receiveData() is inherited from the UserOfFunnelDevice class and al-
lows the modeling classes to receive data from the underlying grammar-based decoder. The
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method takes two parameters: the pointer to the data, and the length of the data. Each
time the grammar-based decoder recovers new data, it is made available via this method.
Therefore, this method is important during the decompression, since it reconstructs SAX
events from the decoded data.

During the compression, the modeling classes generate data that is compressed by the
grammar-based coder. The underlying grammar should be specified by calling the method
setGrammar() before the compression starts.

During the decompression, SAX events are being reconstructed from the data supplied
by the grammar-based decoder. These events are emitted by means of a SAX emitter
which should be specified before the decompression starts (setSAXEmitter()).

XmlSimpleModel xmlsimplemodel.h, xmlsimplemodel.cpp

The XmlSimpleModel class implements the simple modeling, as described in Section 6.2.
During the compression, the SAX events supplied by the XML parser are transformed such
that the structure of the document is encoded using structural symbols. The elements and
attributes are stored in a hash table and encoded using numeric identifiers. The current
position within the document is represented by a stack of the nested elements.

During the decompression, the structure is recovered based upon the decoded structural
symbols. Because the data is supplied by short blocks by the grammar-based decoder, it
has to be buffered. Depending on the current decoding context, the instance of the class
may find itself in various states. Based on this state, and on the data read, corresponding
SAX events are constructed. Because many SAX events contain structured information
(for example, the xmlDecl event contains the version of XML being used, the character
encoding, and the “standalone” flag; the startElement event contains the name of the
element and a list of its attributes and their values; . . . ), the resolved pieces of informa-
tion have to be enqueued during the decompression. Only when complete information is
decoded, the SAX event can be emitted.

XmlAdaptiveModel xmladaptivemodel.h, xmladaptivemodel.cpp

The XmlAdaptiveModel class improves on the XmlSimpleModel and implements the adap-
tive modeling, as described in Section 6.3. During the compression and the decompression,
the structure of the element is modeled. The structure is encoded by structural symbols,
as in the case of XmlSimpleModel, but only when it is necessary. Moreover, the range of
structural symbols is reduced, because the meaning of them is context-dependent. This
causes many problems to arise during the decompression, since special care has to be taken
of correct interpretation of the symbols.

In XmlAdaptiveModel, two separate hash tables are used to store the names of elements
and attributes.

During the processing of the document (compressed or uncompressed), models of in-
dividual elements are being built. One model is represented and maintained by the
ElementModeler class. The models are constructed incrementally, by adding new states
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and transitions to them if necessary. The element models are stored in a stack, to reflect
the hierarchy of the nested elements.

ElementModeler elementmodel.h, elementmodel.cpp

The ElementModeler class represents one element model. The model consists of a nodes
and transitions. Unique numeric identifiers and frequency counts are added to the tran-
sitions. Each node is assigned a list containing the transitions that lead out of it. Fur-
thermore, the pointer to the most frequently used transition that leads out of the node, is
stored in each node.

There are four possible types of nodes: StartNode, EndNode, CharactersNode, and
ElementNode. The element nodes represent the nested elements, and contain pointers to
the corresponding instances of ElementModeler. Initially, each model consists only of
isolated start node and end node.

In each element model, the current position is stored. When an element node is en-
countered, the node is pushed onto a stack of nodes, so that the position is remembered.
When the nested element ends, the position is popped from the stack and the processing
can resume.

The element models are constructed and stored in the XmlAdaptiveModel class. There
are several methods for building of the models and their updating.

The method moveToDesiredNode() attempts to move (using just one transition) to the
node with desired type from the current node. If such a node does not exist, it is created
(end nodes are coalesced to one node to save memory). Depending on the return value of
the method, various actions may be performed by XmlAdaptiveModel. For example, if the
node did not exist, or if the transiton was not the most frequent one, the NACK structural
symbol is output.

The method moweForward() moves along the most frequent transitions. The method
followEdge() behaves in a similar fashion, except that is moves along edges with specified
identifiers.

In each element model, the number of occurrences of the corresponding element with
and without attributes is stored. Based upon these counts, the occurrence of attributes is
predicted. The method setAttributes() is used to specify that the element contains at-
tributes, or not. The method hasAttributes() returns true if the attributes are expected
to occur, and false otherwise.

There are various other methods available: getStartNode() (get the pointer to the
start node), getEndNode() (get the pointer to the end node), getCurrentNode() (get the
pointer to the current node), getElementName() (get the name of the element modeled),
increaseRefCount() (increase the reference count of the element model), getRefCount()
(get the reference count), computeStructuralEntropy() (compute structural entropy
of the element model), getStructuralEntropy() (get the value of structural entropy),
print() (print a textual representation of the model).
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B.1.6 Grammar-related classes

The majority of the grammar-related operations is implemented by the KYGrammar class. In
the class itself, many small and one-purpose data structures are used: Rule (one production
rule), RuleSet (the set of production rules), TerminalDigrams (hash table of digrams
starting with a terminal symbol), VariableDigrams (hash table of digrams starting with
a variable), etc. For more detailed information, refer to the file kydefs.h or to the API
documentation.

KYGrammar kydefs.h, kygrammar.h, kygrammar.cpp

The KYGrammar class implements the greedy irreducible grammar transform for the con-
struction of the grammar, and the sequential algorithm for its encoding. Three Reduction
Rules are also implemented in the class.

During the compression or the decompression, the data is supplied to the grammar by
calling the method append(), which appends one symbol to the input data queue. The data
in the queue is processed by means of the method eatData(): the longest possible prefix
of the data is searched, and one symbol (terminal symbol or variable) is appended to the
root rule (appendToRootRule()). After that, Reduction Rules 1-3 are applied if necessary
(reductionRule1(), reductionRule2(), reductionRule3()). During the compression,
the appended symbol is arithmetically encoded (the necessary frequency statistics of the
symbols is maintained by an instance of class Context). During the decompression, the
symbol is delivered to the modeling component (XmlSimpleModel or XmlAdaptiveModel)
via a FunnelDevice.

To ensure that all the data in the queue is processed by the grammar at the end of the
compression or the decompression, the method flush() should be called.

In case that the grammar becomes too large (8MB is the upper bound on its size), it
is purged (purge()) and new grammar is constructed.

B.1.7 Arithmetic coding classes

Arithmetic coding represents an important component of a grammar-based compressor. In
our implementation, we have used arithmetic coding routines originating from Moffat and
Witten [22]. Because the sources were in C, we have rewritten them into object-oriented
C++. The arithmetic coding and the statistics module were separated in the original
implementation, and so they are in our compressor.

Context context.h, context.cpp

The purpose of the Context is to maintain the alphabet used during arithmetic coding, and
to store the cumulative frequencies of the symbols. The alphabet can be dynamic. To store
the cumulative frequencies, Fenwick implicit tree data structure is used (for details, refer
to [22]). In this representation, n words are required to represent an n-symbol alphabet,
and the frequency counts are calculated in Θ(log n) time for each symbol in the alphabet.
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In the constructor of the class, the size of the initial alphabet has to be specified. New
symbols can be installed by means of the method installSymbol().

To arithmetically encode one symbol, the method encode() can be used. In this
method the probability of the symbol is estimated, and the underlying arithmetic coder is
instructed to encode it. Conversely, to decode one symbol, the method decode() can be
used. In this method, the underlying arithmetic decoder is instructed to decode the target
probability, and the symbol is recovered based upon this probability.

At the end of the encoding, the method encodeEndOfMessage() should be used to
encode the end-of-message symbol. This symbol informs the arithmetic decoder that com-
plete message has been decoded.

ArithCodec arithdefs.h, arithcodec.h, arithcodec.cpp

The ArithCodec class implements the functionality of both the arithmetic coder and the
decoder. It allows to arithmetically encode the symbols of the source message based upon
the probability estimates supplied by the Context, or to decode the symbols from the
encoded data.

During the coding or the decoding, the data is written to (or is read from) some IO
device. To specify this IO device, the methods setOutputDevice() and setInputDevice
are present in the class.

Before the encoding starts, the coder should be initialized by a call to the method
startOutputtingBits(). After the encoding is over, the method doneOutputtingBits()
has to be called to shut down the coder. Similar methods—startInputtingBits() and
doneInputtingBits()—should be called also before and after the decoding.

To encode and decode one symbol, the class contains the methods arithmeticEncode()
and arithmeticDecode(), respectively. These are called from within the Context class.

At compile time (see the file defs.h), it can be specified whether the arithmetic cod-
ing routines should use multiplicative operations, or fixed precision arithmetic (shifts and
adds). The low precision arithmetic causes the coder to run faster, but the average length
of the generated codeword may be slightly longer. By default, low precision arithmetic is
used.

B.1.8 Exception classes

In our system, we make use of the C++ exception mechanism. Many operations (such as
those related to inputs and outputs) may fail during the compression or the decompression,
and for various reasons. By raising appropirate exceptions in these situations, the exception
states can be handled conveniently.

Each exception is inherited from the class ExaltException. There are several types of
exceptions:

• IO exceptions (ExaltIOException)

• XML parsing exceptions (ExaltParserException)
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• Compression and decompression exceptions (ExaltCompressionException)

• Character encoding exceptions (ExaltEncodingException)

• Fatal error exceptions (ExaltFatalErrorException)

Each of these groups contains other exceptions that describe the exception states more
accurately. For example, when the format of the input file is not recognized by the de-
compressor, the exception ExaltUnknownFileFormatException, which is derived from
ExaltCompressionException, is raised.

B.1.9 Other classes

Besides the “core” classes, we make use of several other classes, which perform mostly
support tasks. In the following text, the most important of these classes are described.

Fibonacci fibonacci.h, fibonacci.cpp

The Fibonacci static class implements several methods for encoding nonnegative integers
using order-2 Fibonacci codes, and their decoding. The integers may be encoded either into
an integer variable (encode(), decode()), or into character buffer (encodeToBuffer(),
decodeFromBuffer()).

The Fibonacci class is used by the modeling component of the compressor for encoding
the identifiers of elements and attributes. In adaptive modeling, Fibonacci codes are also
used for encoding the values of the distance counter.

TextCodec textcodec.h, textcodec.cpp

The TextCodec class is used for character encoding conversions during the compression and
the decompression. The functionality of the class is required when the underlying Expat
parser is unable to recognize the encoding in the declaration of the input XML document.
In such a situation, the parser hands over the name of the encoding to the text codec, and
expects the text codec to fill in the encoding structure which describes the mapping from
the document character encoding to UTF-8.

The TextCodec operates with so called MIBs, which are numeric identifiers uniquely
assigned to the character encoding by IANA organization [13]. The method getMIB() can
be used to get the MIB of the character encoding based upon its name. To test whether
the text codec knows or is able to convert the encoding, it is possible to use the methods
knowsMIB() or isAbleToConvert().

There are several character encoding conversion methods contained in the TextCodec
class: fillInMapArray() (fill in the Expat encoding structure), convert() (convert one
character to specified encoding), output() (convert one character or string to specified
encoding and output it using given IO device).
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The current functionality of TextCodec is very limited, but is is easy to enhance it
by adding the support for new character encodings. At present, TextCodec supports the
following character encodings: UTF-8, UTF-16, US-ASCII, ISO-8859-1, and ISO-8859-2
(only for input).

Options options.h, options.cpp

The Options static class allows to specify options that affect the behavior of the compressor
and the decompressor. The key methods of the class are setOption() for setting the value
of a certain option, and getOption() for accesing the value of a certain option.

There are five possible types of options: Verbose (verbose mode), Model (the sim-
ple modeling/the adaptive modeling), PrintGrammar (display the generated grammar),
PrintModels (print the element models), and Encoding (the output character encoding1).

1Currently unsupported
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XML Data. In Knowledge Representation Meets Databases, 2001.

[4] J. Cheney. Compressing XML with Multiplexed Hierarchical PPM Models. In Pro-
ceedings of IEEE Data Compression Conference, pages 163–72, 2001.

[5] J. G. Cleary and W. J. Teahan. Unbounded Length Contexts for PPM. Computer
Journal, 40:67–75, 1997.

[6] J. G. Cleary and I. H. Witten. Data Compression Using Adaptive Coding and Partial
String Matching. IEEE Transactions on Communication, 32:396–402, 1984.

[7] G. V. Cormack and R. N. S. Horspool. Data Compression Using Dynamic Markov
modelling. The Computer Journal, 30:541–550, 1984.

[8] Expat XML Parser. URL: http://expat.sourceforge.net.

[9] H. Fernau. Learning XML Grammars. Machine Learning and Data Mining in Pattern
Recognition MLDM’01, 2123:73–87, 2001.

[10] M. Girardot and N. Sundaresan. Millau: An Encoding Format for Efficient Repre-
sentation and Exchange of XML Documents over the WWW. In Proceedings of the
9th international World Wide Web conference on Computer networks, pages 747–765,
2000.

[11] E. R. Harold and W. S. Means. XML v kostce. Computer Press, 2002. In Czech.

[12] D. S. Hirschberg and D. A. Lelewer. Context Modeling for Text Compression. In
Image and Text Compression, pages 113–145, 1992.

[13] IANA Character Set Names Registry. URL: http://www.iana.org/assignments/
character-sets.



BIBLIOGRAPHY 116

[14] Intelligent Compression Technologies (ICT). XML-Xpress. URL: http://www.
ictcompress.com/products_xmlxpress.html.

[15] J. C. Kieffer and E.-H. Yang. Efficient Universal Lossless Data Compression Algo-
rithms Based on a Greedy Sequential Grammar Transform – Part One: Without
Context Models. IEEE Transactions on Information Theory, 46:755–777, 2000.

[16] J. C. Kieffer and E.-H. Yang. Grammar Based Codes: A New Class of Universal
Lossless Source Codes. IEEE Transactions on Information Theory, 46:737–754, 2000.
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